
Real-Time Concepts Implemented in
Distributed System Programming Languages

Horia Ciocarlie
Computer and Software Engineering Department,
Faculty of Automation and Computers, “Politehnica” University of Timisoara,
Bd.. V. Parvan 2, 300223 Timisoara, Romania
Phone: +40-256-403285, E-mail: horia@cs.utt.ro

Abstract: The problem of time measuring and managing in distributed systems is important
both as an independent problem and for reasons like: the maintenance of the consistency of
distributed data, the elimination of duplicated data and the verification of the authenticity
of a request.
After presenting the main problems that appear during distributed system design and
programming, the paper continues with some issues concerning the domain of real-time
programming. At the same time we emphasize the complex relations between real-time,
concurrent and distributed programming. Then the requirements for the real-time
programming are presented.
Although the paper’s subject is based on the analysis of several specialized languages, the
presented exemplifications are from Java programming language with RTSJ (Real-Time
Specification for Java) extension.

Keywords: real-time programming, embedded systems, distributed systems, concurrent
languages, Real-Time Specification for Java

1 Introduction

Most of the modern microprocessors are used in embedded systems that control
various processes of the real world [1]. The field of applicability is continuously
expanding and includes various domains of human activities from
telecommunications to automation of fabrication processes.

The embedded systems are more and more connected by computer networks. Thus
results the growth of the importance of distributed applications. It is expected that
the number of these applications will grow exponentially.

Designing, programming and implementing distributed systems have risen from
the beginning new problems [2]:

 the heterogeneity of the processors from the nodes of a network

 the various conventions of data representation

 the synchronization of the activities from the remote nodes

 avoiding the congestion of some communication paths or the network
blocking

 maintaining the consistency of the data bases despite of transmission
errors or the malfunctioning of processors or communication paths and
devices

 the security of data, of transmission and of information exchange.

The distributed systems synchronization is based on a time ordering relation
between events. Each computer has its own clock, but clocks can’t be perfectly
synchronized. The absence of a global clock makes difficult the determination of
the states of the programs that are executing.

Thus, the realization of the embedded real-time systems introduces more
difficulties for designers.

2 The Relation between Real-time Programming and
Concurrent Programming

Real-time programming includes programs with an execution time behavior,
depending on the duration of the program’s component activities.

In common sequential programs [3] the time required by a certain activity has no
influence on the program correctness. The execution time of the program is of
interest only globally and first of all, from commercial point of view.

A real-time program is in the direct service of an application (or of a reduced
number of related applications) from which it receives and/or to which it sends
signals. The main feature of the program is its response time, expressing the
promptitude in solving the services required by the application. There are two
typical situations in real time programming:

1 Execution of the operations is required at some specified moments, or at
certain time intervals (sampling periods, control intervals). The time intervals
between the starting of two consecutive activities are known; so, at
programming time, it is possible to verify and, if necessary, to adjust that the
duration of an activity doesn’t exceed some allowed limit of time.

2 Execution of some operations is required at unforeseeable moments,
depending on the arrival of external signals. To assure the correctness of the
program behavior, one can act in one of the following two modes:

- the delay (if possible) of a signal, until the end of the activity started
by the precedent one;

- the establishing of a minimal time interval between consecutive
signals; all activities must fit in this interval.

The active components of a real time program are concurrent processes, which
interact in the form of communication and synchronization; so we can say that
real-time programming implies concurrent programming.

Thus, the real-time programming is the part of concurrent programming in which
the triggering times and the execution times of program actions are significant and
influent the synchronized activities of parallel processes and even the results
correctness.

3 Requirements for Real-time Programming
Languages

Like concurrent programs in general, real time programs were written, for long
time, only in assembly languages. Three were the most important reasons for this:

1 The response time must be exactly determined; for a lot of applications it
must be reduced below some limits, hardly or impossible to achieve in high
level languages.

2 The programmer needs direct access to machine hardware (peripheral
devices, real time clock, input/output ports, etc.); for a long time, high level
languages provided no facilities in this direction.

3 The real time program is also a concurrent program, including its own policy
for process management and synchronization. In this context, the
supplementary implications of an operating system are disturbing.

Successive improvements in hardware and programming languages changed this
situation. Today most opinions agree, that a real time programming language,
must be first of all a performing and highly improved language, and this means
implicitly, a high level language.

The major problem of most companies is that of developing new programs in a
time that is as short as possible. Thus it is important for the production of
embedded real-time systems to use the advantages of programming in a high level

language, of using middleware or tools and methods that permit an increased
productivity without affecting to much the quality of the service (QoS).

Many embedded real-time systems are still developed in C or C++. Writing
programs in these languages is more productive then using assembler languages
but is far from being optimal. Below are some of the causes:

- the lack of special facilities for distributed and real-time processing

- the mechanism of allocation and especially that of deallocation of the
memory are a major source of errors

- C++ is a difficult language, it is hard to be learned and applied.

In conclusion, the embedded real-time software should be realized in high level
languages that are dedicated for this domain.

Some basic criteria for the design of a real time language, can be formulated. The
most important are [3]:

• To assure the necessary security and readability, real time programs must
be first of all structured and modular. Consequently, the programming
language must provide the corresponding structures, to describe both
actions and data, including abstract data types.

• Real-time programs are often large and complex. So the programming
language has to provide facilities for the so called “extended
programming”, this means first of all modularization.

• Real-time programs are concurrent; consequently the programming
language must be proper for concurrent programming.

• Real-time systems use often nonstandard input/output devices. To
program such devices, the language must provide facilities for direct
access to the machine hardware.

• To ensure a maximal reliability of real time systems, the language must
provide the handling of errors and exceptions, allowing so a normal
functionality after incidents.

• The language must provide means for interrupt handling.

• For some functions, the program needs direct access to the real time. This
can be solved by providing some facilities to determine the actual time,
to measure a time interval, to delay a process for a certain time period,
etc.

• For each implementation of a real time language, the user documentation
must contain the execution time for each source statement. These times
can be easily determined by the implementation, when designing the
compiler (more exactly the object code generator).

As a conclusion, a real-time programming language must be a very performing
concurrent language, with supplementary features to access and handle the real-
time. It must provide, first of all, basic facilities for concurrent and distributed
programming [4]:

- a notation for describing parallel activities (to specify concurrent processes);

- the possibility to create and eventually kill processes;

- efficient means for communication and process synchronization.

4 Concurrent and Distributed Java Programming

Although the language’s syntax is based on the syntax of C++, Java is
considerably simpler. There have been eliminated many key words and the
programmer is aided by a very large developing tools library. Independent
functions, global variables or the goto instruction don’t exist anymore. The
pointers arithmetic has also been removed. Thus many programming error sources
have been eliminated. This leads to correct, robust and simple programs, an
important requirement for distributed systems programming.

Java has network programming facilities as it was especially designed for the
Internet [6]. At the same time it satisfies the requirements of distributed and
concurrent programming formulated in §1 and §3 [7], as follows:

 the possibility of processes parallel execution (threads)

 higher security

 more ways of synchronization and communication: synchronization
primitives, semaphores, mutual exclusion, etc.

 the implementation of Client/Server model and of distributed systems
communication [8]: sockets, the transmission of messages, remote
method invocation (RMI).

5 The Realization of Embedded Real-time Systems in
Java

Because of the simplicity and safety [7], and especially because of the low
maintenance cost, Java may be a solution for an efficient development of
embedded real-time systems. Still, the traditional Java implementations have some
important drawbacks [8]:

- the scheduling of Java execution threads is weakly specified

- the language includes the mechanism of garbage collector that is
improper for real-time systems

- it allows the allocation of memory in heap, without controlling the type
of memory in which the objects are allocated.

A part of these problems have received and satisfactory solving from the
definition or Real-Time Specification for Java (RTSJ) [9]. The novelties brought
by this system are:

- garbage collector can be replaced by other methods for memory
management

- it permits the access to the physical memory

- allocation and the access to the memory are more adequate for real-time
systems

- the semantics of execution threads is more rigorous.

In the present there are already RTSJ implementations that permit the utilization
of Java in embedded real-time systems, like TimeSys [10] or jRate from
Washington University [11].

There are also the first evaluations of these implementations, concerning the
performances that can be achieved [12].

In principle, RTSJ extends the Java API and redefines the semantics of some
constructors in order to support real-time applications. Here are some of the
novelties that are being brought [9]:

• Allocation of memory: the classic dynamic allocation (from heap) is extended
with Immortal Memory and Scoped Memory. The objects allocated in Immortal
Memory have the same life time as the application. Each Scoped Memory area
has a reference counter for the number of threads that are active in that area.
The life time of the objects that are allocated in such an area depends on this
counter, as they are deallocated globally when there are no more references to
them.

• Extension of the Java threading model with two new types of threads, that
are specific for real-time: RealTimeThread and NoHeapRealTimeThread
correlated with memory allocation.

• Schedulable objects. RTSJ offers an execution scheduling of entities
generally enough for implementing the most used scheduling algorithms [4].
Although, the best scheduling policy that matches with RTSJ is that based on
execution priorities capable to distinguish between 28 different priorities. The
executable entities are accessed by references.

• Execution asynchronies. RTSJ provides mechanisms of binding at execution
when certain internal or external (asynchronous) events appear. There is also
defined the concept of Asynchronous Transfer of Control that permits the
asynchronous control transfer between executions.

• Access to real time. Embedded systems use timers for making some actions at
a given moment of time or at periodic time intervals. RTSJ provides two timer
types:

 One shot timer: generates an event when the associate time interval expires

 Periodic timer: generates events periodically.

Conclusions

Relying on his experience in implementing concurrent languages, the author
discusses specific problems of real time programming, from the view of high level
languages. The advent and development of concurrent and real time languages,
produced a large diversification of real time programming methology and the
application domains: process control, data acquisition, robotics,
telecomunications, etc.

The main characteristic of a real time program is its promptitude in solving the
desired services (its response time). It depends first of all on the nature of the
application and is highly inflenced by the type of pheripherical devices, number
and speed of processors, number and complexity of operations and not at least, on
the manner in which real time mechanisms are implemented in the programming
language.

All these requirements are satisfied by Java programming language with RTSJ
extension.

References
[1] M. V. Micea, V. Cretu, L. M. Patcas: Program Modeling and Analysis of

Real-Time and Embedded Application, Transactions on Automatic Control
and Computer Science, Vol. 49(63), No. 3, Periodica Politehnica,
Timisoara, 2004, pp. 207-212

[2] B. Ari: Principles of Concurrent and Distributed Systems, Addison Wesley,
1990

[3] P. Eles, H. Ciocarlie: Programarea concurenta in limbaje de nivel inalt,
Editura Stiintifica, Bucuresti, 1991

[4] H.Ciocarlie: The Characteristic Features of a Concurrent Language
Implementation in a Distributed Environment, International Conference on
Computational Intelligence 2004, Istanbul, pp. 121-123

[5] I. Jurca: Programarea retelelor de calculatoare, Editura de Vest, Timisoara,
2000

[6] D. Petcu, V. Negru: Procesare distribuita, Editura Universitatii de Vest,
2002

[7] I. Athanasiu: Java ca limbaj pentru programarea distribuita, Editura Matrix
Rom, Bucuresti, 2002

[8] H. Georgescu: Introducere in universul Java, Editura Tehnica, Bucuresti,
2002

[9] G. Bollella, J. Gosling, B. Brosgol, P. Dible, S. Furr, D. Hardin, M.
Turnbull: The Real-Time Specification for Java, Addison-Wesley, 2000

[10] Timesys, Real-Time Specification for Java Reference Implementation,
www.timesys.com/rtj, 2001

[11] R. Meersman, Z. Tari: The Design and Performance of the jRate Real-Time
Java Implementation, Springer Verlag, 2002

[12] A. Corsaro, D. C. Schmidt: Evaluating Real Time Java Features and
Performance for Real-Time Embedded Systems, Proc. Eighth IEEEE Real-
Time Technology and Applications Symp., Sept. 2002

http://www.timesys.com/rtj

	1Introduction
	2The Relation between Real-time Programming and Concurrent Programming
	3Requirements for Real-time Programming Languages
	4Concurrent and Distributed Java Programming
	5The Realization of Embedded Real-time Systems in Java

