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Abstract. We provide solution of first order linear fuzzy differential equations by varia-

tion of constant formula. The differentiability concept used in this paper is the strongly

generalized differentiability since a fuzzy differential equation under this differentiabil-

ity can have decreasing legth of support function. Under some conditions we provide

solution with decreasing support and so the behaviour of the solution better reflects

the behaviour of real-world systems.

1 Introduction

Fuzzy differential equations are a natural way to model dynamical systems under
uncertainty. First order linear fuzzy differential equations are one of the simplest
fuzzy differential equations which appear in many applications. However the
form of such an equation is very simple it raise many problems since under
different fuzzy differential equation concepts, the behaviour of the solutions is
different (it depends on the interpretation which is used).

The H-derivative of a fuzzy-number-valued function was introduced in [13]
and it has its starting point in the Hukuhara derivative of multivalued func-
tions. First approach to modelling uncertainty of dynamical systems uses the
H-derivative or it’s generalization, the Hukuhara derivative. Under this setting
mainly existence and uniqueness theorems for the solution of a fuzzy differen-
tial equation are obtained (see e.g. [12], [14], [16], [15]). This approach has the
disadvantage that it leads to solutions with increasing length of their support
([6]). This shortcoming is solved by interpreting a fuzzy differential equation
as a system of differential inclusions (see e.g. [11], [6]). The main shortcoming
of using differential inclusions is that we do not have a derivative of a fuzzy-
number-valued function.



The concept of strongly generalized differentiability introduced in [2] and
studied in [3] allows us to solve the above mentioned shortcomings and so we
use this differential in the present paper.

First order linear fuzzy differential equations or systems are studied under
different interpretations by several papers (see [9], [7], [4], [5]). The solutions
provided in these papers have the disadvantages mentioned above. We propose
to solve this problem under strongly generalized differentiability and to show
some advantages of our method.

After a preliminary section we study differentiability of the H-difference and
of the product of two functions. Then we solve first order linear fuzzy differ-
ential equations by variation of constants formula. Here we provide also some
examples. At the end of the paper we present some conclusions and further
research topics.

2 Preliminaries

Let us denote by RF the class of fuzzy subsets of the real axis (i.e. u : R→ [0, 1])
satisfying the following properties:

(i) ∀u ∈ RF , u is normal, i.e. ∃x0 ∈ R with u(x0) = 1;
(ii) ∀u ∈ RF , u is convex fuzzy set (i.e. u(tx + (1− t)y) ≥ min{u(x), u(y)},

∀t ∈ [0, 1], x, y ∈ R);
(iii)∀u ∈ RF , u is upper semicontinuous on R;
(iv) {x ∈ R; u(x) > 0} is compact, where A denotes the closure of A.
Then RF is called the space of fuzzy numbers (see e.g. [8]). Obviously

R ⊂ RF . Here R ⊂ RF is understood as R =
{
χ{x}; x is usual real number

}
.

For 0 < r ≤ 1, denote [u]r = {x ∈ R; u(x) ≥ r} and [u]0 = {x ∈ R; u(x) > 0}.
Then it is well-known that for each r ∈ [0, 1], [u]r is a bounded closed interval.
For u, v ∈ RF , and λ ∈ R, the sum u + v and the product λ · u are defined by
[u + v]r = [u]r + [v]r, [λ · u]r = λ[u]r, ∀r ∈ [0, 1], where [u]r + [v]r means the
usual addition of two intervals (subsets) of R and λ[u]r means the usual product
between a scalar and a subset of R (see e.g. [8], [17]).

Let D : RF×RF → R+∪{0}, D(u, v) = supr∈[0,1] max{|ur
−−vr

−|, |ur
+−vr

+|},
be the Hausdorff distance between fuzzy numbers, where [u]r = [ur

−, ur
+], [v]r =

[vr
−, vr

+]. The following properties are well-known (see e.g. [10] or [17]):
D(u + w, v + w) = D(u, v), ∀u, v, w ∈ RF ,
D(k · u, k · v) = |k|D(u, v), ∀k ∈ R, u, v ∈ RF ,
D(u + v, w + e) ≤ D(u,w) + D(v, e), ∀u, v, w, e ∈ RF
and (RF , D) is a complete metric space.
Also are known the following results and concepts.

Theorem 1 (see e.g. [1]). (i) If we denote 0̃ = χ{0} then 0̃ ∈ RF is neutral
element with respect to +, i.e. u + 0̃ = 0̃ + u = u, for all u ∈ RF .

(ii) With respect to 0̃, none of u ∈ RF \ R, has opposite in RF .



(iii) For any a, b ∈ R with a, b ≥ 0 or a, b ≤ 0 and any u ∈ RF , we have
(a + b) · u = a · u + b · u; For general a, b ∈ R, the above property does not hold.

(iv) For any λ ∈ R and any u, v ∈ RF , we have λ · (u + v) = λ · u + λ · v;
(v) For any λ, µ ∈ R and any u ∈ RF , we have λ · (µ · u) = (λ · µ) · u;

Definition 2 (see e.g. [13]). Let x, y ∈ RF . If there exists z ∈ RF such that
x = y +z, then z is called the H-difference of x and y and it is denoted by x−y.

In this paper the ”−” sign stands allways for H-difference and let us remark
that x− y 6= x + (−1)y.

Let us recall the definition of strongly generalized differentiability introduced
in [2] and [3].

Definition 3 Let f : (a, b) → RF and x0 ∈ (a, b). We say that f is strongly
generalized differentiable at x0, if there exists an element f ′(x0) ∈ RF , such that

(i) for all h > 0 sufficiently small, ∃f(x0 + h) − f(x0), f(x0) − f(x0 − h)
and the limits (in the metric D)

lim
h↘0

f(x0 + h)− f(x0)
h

= lim
h↘0

f(x0)− f(x0 − h)
h

= f ′(x0),

or
(ii) for all h > 0 sufficiently small, ∃f(x0) − f(x0 + h), f(x0 − h) − f(x0)

and the limits

lim
h↘0

f(x0)− f(x0 + h)
(−h)

= lim
h↘0

f(x0 − h)− f(x0)
(−h)

= f ′(x0),

or
(iii) for all h > 0 sufficiently small, ∃f(x0 + h) − f(x0), f(x0 − h) − f(x0)

and the limits

lim
h↘0

f(x0 + h)− f(x0)
h

= lim
h↘0

f(x0 − h)− f(x0)
(−h)

= f ′(x0),

or
(iv) for all h > 0 sufficiently small, ∃f(x0) − f(x0 + h), f(x0) − f(x0 − h)

and the limits

lim
h↘0

f(x0)− f(x0 + h)
(−h)

= lim
h↘0

f(x0)− f(x0 − h)
h

= f ′(x0).

(h and (−h) at denominators mean 1
h · and − 1

h ·, respectively).

Let us remind the following theorem which allows us to consider case (i) or
(ii) of the previous definition almost everywhere in the domain of the functions
under discussion.

Theorem 4 Let f : (a, b) → RF be strongly generalized differentiable on each
point x ∈ (a, b) in the sense of Definition 3, (iii) or (iv). Then f ′(x) ∈ R for
all x ∈ (a, b).



Another result concernes the derivation of a fuzzy constant multiplied by a
crisp function (see [3]).

Theorem 5 If g : (a, b) → R is differentiable on (a, b) such that g′ has at most
a finite number of roots in (a, b) and c ∈ RF , then f(x) = g(x) · c is strongly
generalized differentiable on (a, b) and f ′(x) = g′(x) · c, ∀x ∈ (a, b).

The following theorems concern the existence of solutions of a fuzzy initial
value problem under generalized differentiability (see [3]).

Theorem 6 Let us suppose that the following conditions hold: (a) Let R0 =
[x0, x0 + p]×B(y0, q), p, q > 0, y0 ∈ RF , where B(y0, q) = {y ∈ RF : D(y, y0) ≤
q} denote a closed ball in RF and let f : R0 → RF be a continuous function such
that D

(
0̃, f (x, y)

)
= ‖f(x, y)‖F ≤ M for all (x, y) ∈ R0. (b) Let g : [x0, x0 +

p] × [0, q] → R, such that g(x, 0) ≡ 0 and 0 ≤ g(x, u) ≤ M1, ∀x ∈ [x0, x0 + p],
0 ≤ u ≤ q, such that g(x, u) is nondecreasing in u and g is such that the initial
value problem u′(x) = g(x, u(x)), u(x0) = 0 has only the solution u(x) ≡ 0 on
[x0, x0 + p]. (c) We have D(f(x, y), f(x, z)) ≤ g(x,D(y, z)), ∀(x, y), (x, z) ∈ R0

and D(y, z) ≤ q. (d) There exists d > 0 such that for x ∈ [x0, x0+d] the sequence
yn : [x0, x0+d] → RF given by y0(x) = y0, yn+1(x) = y0−(−1)·∫ x

x0
f(t, yn(t))dt

is defined for any n ∈ N. Then the fuzzy initial value problem
{

y′ = f(x, y)
y(x0) = y0

has two solutions (one differentiable as in Definition 3, (i) and the other one
differentiable as in Definition 3, (ii)) y, y : [x0, x0 + r] → B(y0, q) where r =
min

{
p, q

M , q
M1

, d
}

and the successive iterations

y0(x) = y0

yn+1(x) = y0 +
∫ x

x0

f(t, yn(t))dt, (1)

and
y0(x) = y0

yn+1(x) = y0 − (−1) ·
∫ x

x0

f(t, yn(t))dt (2)

converge to these two solutions respectively.

The following theorem deals with fuzzy differential equations with input
data triangular fuzzy-numer-valued functions. We recall that for a < b < c,
a, b, c ∈ R, the triangular fuzzy number u = (a, b, c) determined by a, b, c is
given such that ur

− = a+(b−a)r and ur
+ = c− (c− b)r are the endpoints of the

r−level sets, for all r ∈ [0, 1]. Here u1
− = u1

+ = b and it is denoted by u1. The
set of triangular fuzzy numbers will be denoted by RT . The following lemma
gives a sufficient condition for the existence of the H-difference of two triangular
fuzzy numbers.



Lemma 7 Let u, v ∈ RT be such that u1 − u0
− > 0, u0

+ − u1 > 0 and len(v) =
(v0

+ − v0
−) ≤ min{u1 − u0

−, u0
+ − u1}. Then the H-difference u− v exists.

Corollary 8 Let f : RT0 → RT , where RT0 = [x0, x0 + p] × (B(y0, q) ∩ RT ),
and y0 ∈ RT such that (y0)1 − (y0)0− > 0 and (y0)0+ − (y0)1 > 0. Let m =
min{(y0)1 − (y0)0−, (y0)0+ − (y0)1}. Under the assumptions (a), (b) and (c) of
the preceding Theorem 6 the fuzzy initial value problem

{
y′ = f(x, y)
y(x0) = y0

has two solutions y, y : [x0, x0 + r] → B(y0, q) where r = min
{

p, q
M , q

M1
, m

2M

}

and the successive iterations in relations (1), (2) converge to the two solutions.

3 Variation of constants formula for fuzzy dif-
ferential equations

In [7] it is proved that variation of constants formula provides solution of first
order linear fuzzy differential equations, using the approach given in [11], which
interprets a fuzzy differential equation as differential inclusions. Similar to the
cited results we will prove variation of constants formula for fuzzy differential
equations under strongly generalized differentiability. The solutions provided in
the present paper and in [7] are in the general case different.

Firstly let us compute the generalized differential of the H-difference of two
functions. The H-difference of functions is understood pointwise.

Theorem 9 Let f, g : (a, b) → RF be strongly generalized differentiable such
that f is (i)-differentiable and g is (ii)-differentiable or f is (ii)-differentiable
and g is (i)-differentiable on an interval (α, β). If the H-difference f(x)− g(x)
exists for x ∈ (α, β) then f − g is strongly generalized differentiable and

(f − g)′ (x) = f ′(x) + (−1) · g′(x),

for all x ∈ (α, β).

Proof. Since f is (i)-differentiable it follows that f(x + h)− f(x) exists i.e.
there exists u1(x, h) such that

f(x + h) = f(x) + u1(x, h).

Analogously since g is (ii)-differentiable there exists v(x, h) such that

g(x) = g(x + h) + v1(x, h)

and we get

f(x + h) + g(x) = f(x) + g(x + h) + u1(x, h) + v1(x, h).



Since the H-differences f(x)− g(x) and f(x + h)− g(x + h) exist we get

f(x + h)− g(x + h) = f(x)− g(x) + u1(x, h) + v1(x, h),

that is the H-difference (f(x + h)− g(x + h))− (f(x)− g(x)) exists and

(f(x + h)− g(x + h))− (f(x)− g(x)) = u1(x, h) + v1(x, h). (3)

By similar reasoning we get that there exist u2(x, h) and v2(x, h) such that

f(x) = f(x− h) + u2(x, h),

g(x− h) = g(x) + v2(x, h)

and so

(f(x)− g(x))− (f(x− h)− g(x− h)) = u2(x, h) + v2(x, h). (4)

We observe that

lim
h↘0

u1(x, h)
h

= lim
h↘0

u2(x, h)
h

= f ′(x)

and

lim
h↘0

v1(x, h)
h

= lim
h↘0

v2(x, h)
h

= (−1)g′(x).

Finally, by multiplying (3) and (4) with 1
h and passing to limit with h ↘ 0 we

get that f − g is (i)-differentiable and

(f − g)′ (x) = f ′(x) + (−1) · g′(x),

The case when f is (ii)-differentiable and g is (i)-differentiable is similar, the
difference being that f − g is (ii)-differentiable.

Firstly we will extend Theorem 5 to the case of the product of a crisp function
and a fuzzy-number-valued function, in some cases.

Theorem 10 Let f : R→ R and g : R→ RF be two differentiable functions (g
is strogly generalized differentiable as in Definition 3, (i) or (ii)).

a) If f(x) · f ′(x) > 0 and g is (i)-differentiable or
b) If f(x)·f ′(x) < 0 and g is (ii)-differentiable then f ·g is strongly generalized

differentiable and we have

(f · g)′ (x) = f ′(x) · g(x) + f(x) · g′(x).

Proof. Case a) can be found in [?]. For the case b) we have the following
subcases:

1) If f(x) < 0, f ′(x) > 0 and g is (ii)-differentiable then the H-difference
g(x)− g(x + h) exists, i.e. there exists u(x, h) ∈ RF , such that

g(x) = g(x + h) + u(x, h).



Also, we have
f(x) = f(x + h) + v(x, h),

where v(x, h) = f(x)− f(x + h) < 0. By Theorem 1, (iii) and (iv) we get

f(x) · g(x) = f(x + h) · g(x + h) + f(x + h) · u(x, h)
+ v(x, h) · g(x + h) + v(x, h) · u(x, h),

that is the H-difference f(x) · g(x)ª f(x + h) · g(x + h) exists and we have

f(x) · g(x)ª f(x + h) · g(x + h) = f(x + h) · u(x, h)
+ v(x, h) · g(x + h) + v(x, h) · u(x, h).

By multiplying with − 1
h and passing to limit with h ↘ 0, we get

lim
h↘0

f(x) · g(x)ª f(x + h) · g(x + h)
−h

= lim
h↘0

f(x + h) · u(x, h)
−h

+ lim
h↘0

v(x, h)
−h

· g(x + h) + lim
h↘0

v(x, h)
−h

· u(x, h).

Since g is continuous, the last term is 0.
Analogously we get

lim
h↘0

f(x− h) · g(x− h)ª f(x) · g(x)
−h

= lim
h↘0

f(x− h) · u′(x, h)
−h

+ lim
h↘0

v′(x, h)
−h

· g(x− h) + lim
h↘0

v′(x, h)
−h

· u(x, h),

and finally by Definition 3 it follows that

(f · g)′(x) = f ′(x) · g(x) + f(x) · g′(x).

2) If f(x) > 0, f ′(x) < 0 and g is (ii)-differentiable then the H-difference
g(x)ª g(x + h) exists, i.e. there exists u(x, h) ∈ RF , such that

g(x) = g(x + h) + u(x, h).

Also, we have
f(x) = f(x + h) + v(x, h),

where v(x, h) = f(x)− f(x + h) > 0.
Similar to the first case we obtain

(f · g)′(x) = f ′(x) · g(x) + f(x) · g′(x).

Now we consider the fuzzy initial-value problem
{

y′(x) = a · y(x) + b(x)
y(x0) = y0

, (5)

where a ∈ R, y0 ∈ RF and b : (x0, x1) → RF .
The following theorem is variation of constants formula for fuzzy differential

equations.



Theorem 11 (i) If a > 0 then

y(x) = ea(x−x0)

(
y0 +

∫ x

x0

b(t) · e−a(t−x0)dt

)

is (i)-differentiable and it is a solution of the problem (5).
(ii) If a < 0 and if the H-difference y0 −

∫ x

x0
(−b(t)) · e−a(t−t0)dt exists then

y(x) = ea(x−x0)

(
y0 −

∫ x

x0

(−b(t)) · e−a(t−x0)dt

)

is (ii)-differentiable and it is a solution of the problem (5).

Proof. The case (i) follows by Theorem 10 and by [17], Theorem 3.6.
For the case (ii) we observe that the H-difference y0−

∫ x

x0
(−b(t)) ·e−a(t−x0)dt

is differentiable by Theorem 9 and by [17], Theorem 3.6 we get
(

y0 −
∫ x

x0

(−b(t)) · e−a(t−x0)dt

)′
= b(x)e−a(x−x0).

Since a < 0 ea(x−x0) and
(
ea(x−x0)

)′
have opposite sign and then by Theorem

10 we obtain that y is a solution of the problem (5).

Remark 12 The solution provided by the preceeding Theorem 11, (ii) has de-
creasing legth of the support of the level sets, and so in this case, if for example
y0 −

∫ x

x0
(−b(t)) · e−a(t−x0)dt exists for any x ∈ (x0,∞) and if it is bounded

then limx→∞ y(x) = 0, i.e. we get assimptotical stability. This solution do
not allways exist globally, however, by Corollary 8, this solution allways ex-
ists locally. The global existence of such solution is ensured if for example
the function b is real-valued, since in that case the H-difference allways exists
y0 −

∫ x

x0
(−b(t)) · e−a(t−x0)dt exists for any x ∈ (x0,∞).

In what folows we provide two examples.

Example 13 (see [3]) In [7] it is solved for example the fuzzy differential equa-
tion y′(x) = −2y, y(0) = (0, 1

2 , 1). Since in the crisp case this equation has a
solution that decreases asymptotically to 0, we expect solution with decreasing
support, i.e. (ii)-differentiable. In [7] it is obtained that the solution to this prob-
lem (i.e. a function which satisfy some differential inclusions) has the level sets
[y(x)]β =

[
β
2 e−2x,

(
1− β

2

)
e−2x

]
, β ∈ [0, 1], so y(x) = y(0) · e−2x. It is easy to

see that y(x)−y(x+h) = y(0) · (e−2x−e−2(x+h)) exists and by Definition 3, (ii)
we have y′(x) = limh↘0

y(x)−y(x+h)
−h = (−2) · y(x), and so y(x) = y(0) · e−2x is a

solution of the initial value problem under strongly generalized differentiability.

Example 14 Let us solve the fuzzy initial-value problem
{

y′(x) = (−1) · y(x) + x
y(0) = (1, 2, 3) , (6)



Then since the H-difference y0 −
∫ x

x0
(−t) · e−tdt exists for any x ∈ (x0,∞),

by Theorem 11, (ii) we get that

y(x) = e−x

(
(1, 2, 3)−

∫ x

0

(−t) · etdt

)

= x− 1 +
(
2e−x, 3e−x, 4e−x

)
.

We observe that in this case we have D(y(x), x − 1) ≤ 4e−x, and it follows
that limx→∞D(y(x), x − 1) = 0 behaviour which is similar to the assimptotic
behaviour of solutions for crisp linear differential equations. Let us remark
that under the H-differentiability concept since solutions of a fuzzy differential
equation have allways increasing support, such an assimptotic behaviour was not
possible.

4 Concluding remarks

By variation of constants formula we provided solutions to fuzzy initial value
problems for first order linear fuzzy differential equations. These solutions may
have decreasing length of their support. The examples provided in this paper
show us that we can have in this case assimptotic behaviour of the solutions
similarly to the crisp case, and also, we may have reversible processes which
was not the case under H-differentiability.

The disadvantage of strongly generalized differentiability of a function with
respect to H-differentiability and Hukuhara differentiability seems to be that a
fuzzy differential equation has not a unique solution. The advantage is that the
solution better reflects the behaviour of real-world system.

Generalized differentiability has also advantages with respect to differential
inclusions. Firstly, it is more practical for numerical computation. Secondly,
one can use the (partial) derivative of a fuzzy-number-valued function, which
is not the case when interpreting a fuzzy differential equation as a system of
differential inclusions, since this last one interprets directly the notion of fuzzy
differential equation, without a derivative.

For further research we will study two-point boundary value problems for
fuzzy differential equations and partial differential equations in fuzzy setting.
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