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Abstract: Multi-agent systems are winning more and more battles in the artificial 
intelligence field. A feasible and successful approach proved to relay on small and simple 
agents inspired from biological models. This approach emphasises the significance of the 
environment in the agent system, the attention that must be paid to the dynamics that 
emerges from interactions and the importance of growing rather then building agents. 
Finding out the form and parameters that influence the system behaviour is non-trivial for 
humans, even more difficult than knowledge engineering. The paper proposes and 
investigates the methods that are enabling user-driven solutions in dealing with this 
challenge. The methods are based on two essential functional requirements: a) at macro 
level, the need to monitor and represent in an intuitive way the system behaviour and b) at 
micro level, the need to control and track the system state space. The approach proved to 
be workable on usual configurations and effective in dealing with combinatorial explosion. 
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1 Introduction 

Multi-agent systems (MAS) are winning more and more battles in the artificial 
intelligence (AI) field due to their ability in solving difficult problems. Some 
approaches are based on complex agents that are trying to emulate human 
intelligence and reason explicitly about their coordination. Other approaches draw 
on small and simple agents inspired from biological models where the far-most 
known multi-agent system seems to be the ant-system (AS). This approach 
emphasises the significance of the environment in the agent system, the attention 



that must be paid to the dynamics that emerges from interactions and the 
importance of growing rather then building agents. However, such an approach 
reintroduces many of the problems of complex system design. As long as there is 
no known algorithm to derive a specification of individual behaviour from overall 
system behaviour, a fundamental challenge in AS is to understand the relation 
between individual agent behaviours and the behaviour of the system as a whole. 
This is yet a challenge: as stated in [12], “much current work on constructing 
systems of this sort is more art than science” because “they often exhibit 
regularities (such as exponential convergence) that we do not understand, and we 
do not know how to improve their functioning in a disciplined manner”. A most 
appropriate such manner is to study distributed decentralized systems (first of all, 
their convergence) via a simple statistical model of local behaviour [12]. 

On the other hand, Prigogine’s idea that the most interesting scientific activities 
seem to occur at domain interfaces is a confirmed – and, because of financial 
reasons, often (mainly, now, in Romanian universities) the only affordable – path 
for applied research. Thus, combining the fields of Manufacturing Systems and 
Artificial Intelligence is already a customary undertaking; the outcome: Intelligent 
Manufacturing Systems. Still, on this path, rather incremental advancements are 
likely. 

However, trying a “second degree” reading of Prigogine’s idea, a more promising 
path is to prefer newer paradigms – for instance, stigmergic coordination (SC) – 
since they are closer to a syncretic stage, able to provide significant progress. 
Moreover, inter-paradigmatic synergy – e.g., by integrating stigmergic control 
with symbolic coordination – can be reached more easily. 

Since local behaviour cannot be predicted analytically, it must be detected in an 
operational system. Thus, control elements must incorporate hooks for monitoring 
the system performance in real time. As a result, the paper proposes a new 
approach for a reduced class of problems that do not demand full autonomy and 
are able to accept user-driven solutions in real time. The aim is to faster AS 
deployment in real-life applications. 

In Section 2, the paper introduces the rationale, related work and its history. 
Section 3 presents the SC model together with its strengths and weaknesses. 
Section 4 investigates and proposes two novel approaches that proved to be 
efficient in tuning the overall system behaviour. They are based on two essential 
functional requirements that we built in the system in order to assess their 
effectiveness. Firstly, there is the need to monitor and represent the system 
behaviour in an intuitive way for the designer. Secondly, there is the need to 
control and track the trajectory of the system by employing user-driven heuristics 
(UDH) and recording state-space data. The last section draws conclusions and 
intentions. 



2 Rationale, Related Work, and History 

Since the reasons for choosing SC have been detailed in [4], to impair redundancy, 
they are skipped over. Here the focus is on user-driven heuristics [3]: 

Why humans? The term has to be read in three tones, epitomizing three rationales: 

a) Humans – seen as the apex of symbolic reasoning – act as counterparts of sub-
symbolic ants, in achieving inter-paradigmatic synergy (to take the best from two 
quite dissimilar worlds and to get the most from intersecting them). 

b) Primarily, when complexity (of all kinds) is high, software effectiveness 
becomes uncertain and direct human intervention is rather welcomed (in this 
context, through UDH). 

c) It is still helpful to remind that modern IT systems must be anthropocentric – a 
chief raison d'être of agents. Thus, the users (no matter whether system engineer, 
application developer, manager, and so on) should be allowed to monitor the 
system and to communicate with, using familiar semantics – i.e., symbol-based 
languages, humans are accustomed to. 

From an engineering point of view, even the fundamental drawback of any sub-
symbolic paradigm, i.e. the trouble to understand what is actually occurring in the 
lower system levels, is less disturbing than when using paradigms that are more 
familiar (as artificial neural networks or evolutionary algorithms) since stigmergic 
behaviour is easier to follow due to its simplicity – at least in the case of common 
ants. (Desert ants – cataglyphis fortis – show a much more complex behaviour: 
they do not use pheromones to mark their path; instead, they navigate by path 
integration and by visual landmarks [21] [17] [18].) 

Considering the objective (adapting the Ant System for a class of problems that 
are able to accept user-driven solutions) and the rationale (the reasons above), the 
approach is based on the following premises and criteria [20] [4]: 

a) To be reasonable on usual configurations, the “artificial ant colony” has to be 
restricted to a limited number of agents (for a 1.5 GHz processor, 200 ants needed 
about 1 second to travel through 200 places [19]). 

b) To allow assessment (a genuine comparative evaluation), the undertaking has to 
avoid starting from scratch. 

c) The problem-class chosen has to be of manageable complexity (to prevent 
combinatorial explosion) [15]; moreover, it should be a familiar “workhorse”. 

d) Beyond the paper’s aim, practicality itself entails that the behaviour of ants 
shall be taken only as initial model: agents, pheromones, environment, behaviour, 
and so on, must not simulate an ant society; in contrast, they shall become a 
compliant problem-solving tool. 



e) The symbolic paradigm has to be directly brought in several variants, to amend 
the pattern. 

All tests apply to Ant System TSP [16] [14] [7] [13] [22] and have been carried 
out within the same environment as in [19] [20] to be able to draw conclusions. 

History. The paper stems from two threads of history: 

Synergy. As regards inter-paradigmatic synergy [1], suggests a triangular 
synergistic approach, considering the way multi-agent systems and holonic 
systems have to act in real-time (i.e., should be based on threads). 

Stigmergy. In [20] less quantifiable synergistic effects were achieved deviating 
from the biological model applied in EAS by adding symbolic processing 
components (firstly adapting the environment and secondly instituting limited 
central coordination). On the other hand, the construction of a symbolic navigation 
map was treated in [10] for multi-objective problems. 

The confluence begun in [8] [2] (on a more abstract level) and got shape for SC in 
[3] and [4]. In [5] the relationship between stigmergy and synergy was explored 
based on the threshold principle. 

3 The Adapted Model 

In order to assure autonomy to the paper, the model description is adapted from 
[4]. 

The model [11] [16] [6] [13] [22] [9] is in essence a coordination mechanism, 
based on the creation and placement of a dissipative field of smelling substances 
(the ant pheromones) in the environment; such “stigmas” alter the environment for 
other ants and influence their behaviour. However, especially in the syntagm 
“stigmergic coordination” related to “ant-based systems” (ABS), it “describes a 
form of asynchronous interaction and information exchange between agents 
mediated by an "active" environment” [6], or “the production of certain behaviour 
in agents as a consequence of the effects produced in the local environment by 
previous behaviour” [9] (cited in [17]). In this context: “the agents are simple, 
reactive, and unaware of other agents or of the emerging complex activities of the 
agent society; the environment is an important mechanism to guide activities of 
these agents and to accumulate information about ongoing activities of the whole 
agent society” [6]. 

From the point of view of operations research, the second major advantage of SC, 
mentioned above, is not vital, since a kind of global coordination is needed 
anyhow, and the way to achieve it is less relevant. The other two strengths remain 
crucial; moreover, there are specific features of the ant behaviour that are similar 



to several requirements of this sub-field (or easily adapted to). The most relevant 
are: 

a) The usually huge number of iterations needed to reach the solution. 

b) The likeness between the environment of the ant colony and a graph. 

c) The straightforwardness of using pheromones as weights (enhanced by the 
simple ways to adjust their intensity in order to control dynamic environments). 

d) The pheromonic positive reaction used to support promising search paths as 
well as the negative reaction used to dissuade unpromising ones. 

The price to pay for those strengths can be high, because of the unavoidable 
differences between artificial ants and their natural counterparts. For operational 
research applications, such significant discrepancy are memory requirement (e.g., 
to retain partial solutions), communication with the “system”, world and time 
(discrete vs. continue), and a minimal look-ahead ability. 

4 Implementation Example 

The chosen variant for solving TSP was EAS [14] because it was the first relevant 
attempt to add symbolic-processing components to ant-inspired models. The 
investigation in this section branches in two directions, both taking advantage of 
the UDH. The indirect UDH is the heuristics driven by modifying the parameters, 
and the direct UDH is the one obtained by the express modification of the 
environment (i.e. the pheromone intensity). 

4.1 Indirect User-Driven Heuristics 

Having many parameters, this algorithm is complex enough and it can be 
efficiently fine-tuned for specific map configurations at design-time, but 
especially through UDH at run-time as illustrated in Figure 1. 

Considering the double task of the model, these parameters are used in a bi-
semantic manner. Thus, the original EAS parameters have the following general 
meanings: 

• m – number of ant-like entities used to solve the problem; 

• d – the generalized distance expressing the weight of a graph edge (e.g. the 
distance between two towns for TSP or the duration of a technological 
operation for manufacturing control); 

• τ – pheromone intensity on a graph edge; 

• q – the amount of pheromone deposited by an ant on a graph edge; 



• ρ – evaporation rate of the pheromones (expressing the (in)stability of the 
environment the system is acting in). 

 

To express the effect of the above parameters, some ancillary variables are useful 
in choosing the route in the graph: α –the pheromone intensity (exploitation), β – 
the generalized distance (exploration), e – the successful search history. 

Although for some of the parameters described above, their influence on the 
system behaviour could be intuitive, for the most of them, to discover their 
optimal values, repetitive runs are indispensable. Moreover, in certain dynamic 
settings finding their optimal values could be unfeasible. 

Among these parameters, the most sensitive proved to be m and ρ; as regards the 
ancillary parameters, their sensitivity related to the sensitivity of ρ is shown in 
Figure 2. 

Usually a trade-off between them has to be found in order to achieve the best 
quality solution (i.e. near to optimum solution in acceptable time). For real-world 
problems, this trade-off cannot be made without direct user involvement (e.g. 
finding in the next 5 minutes a better solution than the current one is more 
important than finding the best solution in the next 20 minutes). 

Figure 1 
Snapshot of the experimental model, capturing some parameters for UDH 



 
The importance of the evaporation 
speed of the pheromone (ρ) can be 
explained as follows: a high ρ value 
could trigger the need to re-explore the 
map, while a low ρ value could lead to 
the saturation of the paths, creating a 
general confusion in choosing the best 
way. 

An example of applying UDH in shown 
in Figure 3, presenting the system 
reaction to user-initiated variations of α 
and β (using the same interface 
components as in Figure 1). Here, UDH 
was applied to speed-up convergence. 
Thus, after 45 iterations expressing a 
search based on a significant weight of the “look-ahead” ability (distance to the 
next town) against “natural” ant behaviour (pheromone-driven search), the user 
remarks that the ants “oscillate” around the near-to-optimum solution. Hence, the 
search strategy is modified towards a more “ant-like” search, i.e. boosting the 
weight of pheromone traces and reducing that of map-awareness. 

As a result, the search converges better (successive iterations are closest to each 
other and to the final solution). Thus, in this punctual situation, a bit of “more sub-
symbolic processing” proved to be adequate. Of course, in other cases, “more 
symbolic processing” is better (either to sped-up convergence, or to find a closer-
to-optimum solution). 

Another kind of approach is the dynamic modification of the parameters through a 
monitoring thread, but this raises problems that are even more difficult to solve, 

Figure 2a 
Solution sensitivity against α and ρ 

Figure 2b 
Solution sensitivity against α and β 

Figure 2c 
Solution sensitivity against β and ρ 



such as when to modify them and how. To define such rules, they must be firstly 
extracted from the user experience. 

 

4.2 Direct User-Driven Heuristics 

Even though the improvement obtained by dynamically modifying the parameters 
guides the search fine enough, the user must also have the possibility to guide the 
search in a more explicit manner. Looking for a global-optimum solution, the ants 
may be deficient in resolving simple local problems produced by the routing 
between a small number of towns. 
This kind of problems is illustrated in 
Figure 4. 

The “A” zone (formed by towns N77, 
N76, N78 and N68) and the “B” zone 
(formed by towns N91, N61, N62, 
N60, N116, N90, N59 and N100) 
represent local routing problems for 
the ants. The reasonable question 
“why do ants fail to resolve these 
simple problems?” is well founded 
especially because the ants would 
solve them quickly if these problems 
would not be local-problems of a 
bigger one. Because of the (very) 
small distance between the towns, 
comparing to the distance to other 
towns in the map, the ants are attracted by choosing the shorter route between 
them. This leads also to another problem because on the shorter routes the ants 
deposit a larger amount of pheromone and make these routes even more attractive. 
This kind of problems can not be easily solved neither by decreasing the amount 
of pheromones that an ant deposit, nor by “instructing” the ants not to take so 
much in consideration the distance between towns. 

Figure 3 
Exploration versus exploitation through UDH

Figure 4 
Local (Sub)-Problems of the Global 

Problem



Although the problems described above are hard for the ants to overcome, they are 
not difficult at all for the user who is guiding the search. For example, the solution 
for the problem within the “A” zone is the route that goes through the towns N77, 
N78, N76 and N68 in one direction or N68, N76, N78 and N77 for the other 
direction, both having the same lengths and both being valid (because the TSP 
problem described above is symmetrical). Almost in the same manner, the user 
can easily give the solution for the problem within the “B” zone: N90, N116, N60, 
N59, N62, N61 and N91, or for the other direction. 

The easiest way to implement this kind of UDH is by giving the user the 
possibility to modify the intensity of the pheromones on any path between towns. 
For example, in order to solve the problem within the “A” zone, the user must 
reduce the intensity of the pheromones on the paths that links the towns N77 - 
N76 and N78 - N68, and to increase the intensity of the pheromones on the paths 
that links the towns N77 - N78 and N76 - N68. 

The comparison between the standard and the direct-UDH is presented in Figure 
5. After a number of iterations, the user observes that the ants are blocked in a 
local-optimum solution and decides to modify the environment to speed-up the 
search. The lower line in the graphic represents the solution quality after the user 
intervention. 

 
It can be clearly seen that without the direct-UDH, the convergence to the 
optimum solution would have taken much more time (as represented by the upper 
line in the graph). 

It is also true that ants may overcome this kind of problems by themselves, 
because of their “free will” (the choice of the next town being a probabilistic one, 
e.g. an ant can choose to go from the current town to another that is very far, using 
a path where the intensity of the pheromone is very low), but this can take much 
more time than a “divine” user-intervention. 

Conclusions and Intentions 

As mentioned in the introduction of the paper this kind of approach suits for a 
reduced class of problems that do not demand full autonomy and are able to accept 
user-driven solutions, time being here the key-factor that decide this. 

Figure 5 
Comparison between direct and indirect-UDH approach



The approach proved to be workable on usual configurations (tested with usual 
benchmarks on classical problems) and effective in dealing with combinatorial 
explosion (e.g. the nondeterministic problems) – confirming the conclusions 
arrived at for TSP in [20]. 

In comparison with the results from [20], the progress was achieved mainly 
extending the central coordination, via the “user-driven heuristics” concept, 
particularly by the direct UDH, where, depending on the user skills the time to 
reach the best solution can be extremely reduced. 

The next step is to implement a monitor thread or an agent that will replace the 
user: “Agent-Driven Heuristics”. 
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