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Abstract. Nowadays due to the yearly multiplying data comes always the need for useful
methods, algorithms, that make the processing of these data easier. For the solution of this
problem data mining tools come into existence, to which clustering algorithms belong. The
purpose of this paper is to propose a continuously extensible, standard tool, which is useful
for any MATLAB user for one’s aim. The toolbox contains crisp and fuzzy clustering algo-
rithms, validity indexes and linear and nonlinear visualization methods for high-dimensional
data. The web-based prototype version of the toolbox already has been developed. It means
that users do not need to have MATLAB software and programming knowledge, but only a
web browser and they can load their own data into the web server and download the results
because the program codes run on Matlab Web Server with a developed data mining portal,
which is found in the following url: www.pe.vein.hu/datamine. The portal is in test
phase, with limited services. The Fuzzy Clustering and Data Analysis Toolbox with User’s
Guide is available at www .mathworks.com/fileexchange.

1 Introduction

In this paper we propose a MATLAB toolbox for data analysis based on clustering
and its application via Internet. Data analysis and data mining methods are more
and more important because lots of data is being collected and warehoused in re-
cent years since these data definitely have the potential to provide information. The
definition of data mining is extraction of interesting (non-trivial, implicit, previ-
ously unknown and potentially useful) information or patterns from data in large
databases. The tasks of data mining can be very different. We can group the data
mining tools and processing algorithms in the following primary data mining meth-
ods: Classification, Regression, Clustering, Summarization, Dependency Modeling,
Change and Deviation Detection.

Many MATLAB toolboxes have been developed in several research fields in
recent years. A MATLAB toolbox is presented for Self Organizing Map in [1], an-
other one is for Bayes Net in [2] and another is for dimensional analysis in [3]. The
so called KERNEL toolbox can be used for knowledge extraction and refinement
based on neural learning [4]. Robert Babuska developed a toolbox for fuzzy model
identification [5]. These toolboxes are available in the Internet but none of them can
be used without MATLAB. The web based variant of the proposed toolbox enables



MATLAB independent usage and it does not make demand on the client computers
because it runs on the web server.

The proposed toolbox contains clustering methods and visualization techniques
based on clustering. A cluster is a collection of data objects that are similar to one
another within the same cluster and dissimilar to the objects in other clusters. Clus-
ter analysis is grouping a set of data objects into clusters without any predefined
classes so clustering is unsupervised classification. Clustering algorithms can be
partitioning, hierarchy, density-based, grid-based or model-based methods.

Objective function based fuzzy clustering algorithms have been used extensively
for various problems such as pattern recognition [6], data analysis [7], image pro-
cessing [8] and fuzzy modelling [9]. Fuzzy clustering algorithms partition the data
set into (partially) overlapping groups in a way that clusters describe an underlying
structure within the data. To obtain a good result, a number of issues are of impor-
tance. These concern the shape and the volume of the clusters, the initialization of
the algorithm, the distribution of the data patterns and the number of clusters.

This toolbox contains objective function based partitioning algorithms: they
construct various partitions and then evaluate them by some criterion to minimize an
objective function that is based on the distance between the cluster prototypes and
the data points. The toolbox contains the k-means, k-medoid (crisp), fuzzy c-means,
Gustafson-Kessel and Gath-Geva (fuzzy) clustering methods and other important
tools such as methods for determining the number of clusters and for visualization
of the clustering results.

The toolbox contains method for visualization of high-dimensional data. Visual-
ization is a technique that projects data in higher dimensions to data in lower dimen-
sions while trying to preserve the distances between all points. It can be very use-
ful because it can (i) identify meaningful underlying dimensions that could explain
similarities or dissimilarities in the data, (ii) detect underlying structure and (iii) re-
duction the data dimension and reveal relationships. Nonlinear mapping methods
are often based on the results of a clustering algorithm so the clustering and visual-
ization algorithms have a strong connection.

The so-called online data mining has greater and greater importance in our in-
formation society. For this purpose we developed a tool which enables us to use data
mining methods via the internet, where the application is running in the server side
not in the client computers, so the resources of client computers are free for other
applications. For this purpose the client has to have only a web browser.

The paper is organized as follows. Section 2 presents the theoretical base of
the toolbox and Section 3 gives application examples to prove the applicability of
this Toolbox. Section 4 presents an application by which it can be used via internet
without downloading and installing the toolbox. Section 5 contains the conclusions.



2 Fuzzy Clustering and Data Analysis Toolbox

The objective of cluster analysis is the classification of objects according to simi-
larities among them, and organizing of data into groups. Clustering techniques are
among the unsupervised methods, they do not use prior class identifiers. The main
potential of clustering is to detect the underlying structure in data, not only for clas-
sification and pattern recognition, but for model reduction and optimization. Clus-
tering techniques can be applied to data that is quantitative (numerical), qualitative
(categoric), or a mixture of both. In this paper, the clustering of quantitative data is
considered.

Since clusters can formally be seen as subsets of the data set, one possible clas-
sification of clustering methods can be according to whether the subsets are fuzzy or
crisp (hard). Hard clustering methods are based on classical set theory, and require
that an object either does or does not belong to a cluster. Fuzzy clustering methods
allow objects to belong to several clusters simultaneously, with different degrees of
membership. In many real situations, fuzzy clustering is more natural than hard clus-
tering, as objects on the boundaries between several classes are not forced to fully
belong to one of the classes, but rather are assigned membership degrees between 0
and 1 indicating their partial memberships.

Different classifications can be related to the algorithmic approach of the clus-
tering techniques. In this work we have worked out a toolbox for the partitioning
methods, especially for hard and fuzzy partition methods.

In the following part of this section we briefly discuss the applied and well-
known clustering methods, validity indices and algorithms for visualization of clus-
ters. As generic notation, ¢ will denote the number of clusters, N the number of data
points and n the dimension of each data point.

2.1 Clustering Algorithms

The k-means and k-medoid algorithms are hard partitioning methods and they are
simple and popular, though them results are not always reliable and these algorithms
have numerical problems as well. The k-means and k-medoid algorithms allocates
each data point to one of c¢ clusters to minimize the within-cluster sum of squares:
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where A; is a set of objects (data points) in the i-th cluster and v;j is the mean for
that points over cluster i. In k-means clustering the cluster prototype is a point. In
k-medoid clustering the cluster centers are the nearest objects to the mean of data in
one cluster

The fuzzy c-means algorithm (FCM) can be seen as the fuzzified version of the

k-means algorithm and is based on the minimization of an objective function called
c-means functional:
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where V = [v],va,...,V.], v; € R" is a vector of cluster prototypes (centers), which
have to be determined, D%, = ||xx — vi[|3 = (xk — vi)TA(x, — ;) is a squared inner-
product distance norm, and the N X ¢ matrix U = [u] represents the fuzzy partitions,
where u;; denotes the membership degree that the ith data point belongs to the kth
cluster. Its conditions are given by:
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FCM algorithm can find only clusters with the same shape and size because the
distance norm A is not adaptive and it is often Euclidean norm (spherical clusters).
The solution can be given by Lagrange multiplier method.

Gustafson-Kessel algorithm (GK) is the extended version of the standard fuzzy
c-means algorithm by employing an adaptive distance norm, in order to detect clus-
ters of different geometrical shapes in one data set. Each cluster has its own norm-
inducing matrix A;. The objective function cannot be directly minimized with re-
spect to A;, since it is linear in A;. This means that J can be made as small as desired
by simply making A; less positive definite. To obtain a feasible solution, A; must be
constrained in some way. The usual way of accomplishing this is to constrain the
determinant of A;. Allowing the matrix A; to vary with its determinant fixed corre-
sponds to optimizing the cluster’s shape while its volume remains constant so GK
algorithm can find clusters with different shape but with the same size [10].

Gath-Geva algorithm (GG) is based on the fuzzy maximum likelihood esti-
mation and it is able to detect clusters of varying shapes, sizes and densities. The
cluster covariance matrix is used in conjunction with an “exponential” distance, and
the clusters are not constrained in volume. However, this algorithm is less robust in
the sense that it needs a good initialization, since due to the exponential distance
norm, it converges to a near local optimum [11].

2.2 Validation

Cluster validity refers to the problem whether a given fuzzy partition fits to the data
all. The clustering algorithm always tries to find the best fit for a fixed number of
clusters and the parameterized cluster shapes. However this does not mean that even
the best fit is meaningful at all. Either the number of clusters might be wrong or
the cluster shapes might not correspond to the groups in the data, if the data can
be grouped in a meaningful way at all. Two main approaches to determining the
appropriate number of clusters in data can be distinguished:

e Starting with a sufficiently large number of clusters, and successively reducing
this number by merging clusters that are similar (compatible) with respect to
some predefined criteria. This approach is called compatible cluster merging
[12].

o Clustering data for different values of ¢, and using validity measures to assess
the goodness of the obtained partitions.



Different scalar validity measures have been proposed in the literature, none of
them is perfect by oneself, therefore we used several indexes in our Toolbox. De-
tailed description about the applied indexes can be found in the literature so we
just make mention of them in this section: Partition Coefficient (PC), Classifica-
tion Entropy (CE), Partition Index (SC), Separation Index (S), Xie and Beni’s Index
(XB),Dunn’s Index (DI) and Alternative Dunn Index (ADI).

Note, that the only difference of SC, S and XB is the approach of the separation
of clusters. In the case of overlapped clusters the values of DI and ADI are not really
reliable because of re-partitioning the results with the hard partition method.

2.3 Visualization

The clustering-based data mining tools are getting popular, since they are able to
“learn” the mapping of functions and systems or explore structures and classes in
the data. There are often high-dimensional data in practice and it can be practical if
we can see the results of the clustering (e.g. for checking the the results or finding
out the underlying structure of the data). For this purpose several methods can be
used.

The Principal Component Analysis maps the data points into a lower dimen-
sional space, which is useful in the analysis and visualization of the correlated high-
dimensional data. This mapping is based on the eigenvector-eigenvalues decompo-
sition of F covariance matrix and uses only the first few nonzero eigenvalues and
the corresponding eigenvectors.[1]

The Sammon mapping method can be used for the visualization of the clus-
tering results, which preserves interpattern distances. This mapping method finds
N points in a g-dimensional data space, where the original data are from a higher
n-dimensional space. The interpoint distances measured in the n-dimensional space
approximate the corresponding interpoint distances in the g-dimensional space. This
is achieved by minimizing an error criterion called Sammon’s stress using e.g.
gradient-descent method. [13].

To avoid the high computational of Sammon mapping, a modified Sammon map-
ping algorithm is used in this work. The fuzzy Sammon mapping method uses the
basic properties of fuzzy clustering algorithms where only the distance between the
data points and the cluster centers are considered to be important [9]. The modified
algorithm takes into account only N X ¢ distances, where ¢ represents the number
of clusters, weighted by the membership values. This means, in the projected two
dimensional space every cluster is represented by a single point, independently to
the form of the original cluster prototype.



3 Application of the Toolbox

3.1 Comparing the Clustering Results

Using the validity measures mentioned in Section 2.2 the partitioning methods can
be easily compared. For illustration, a synthetic data set was used shown in Fig. 1,
Fig. 2 so the index-values are better demarcated at each type of clustering. These
validity measures are collected in Table 1.

First of all it must be mentioned, that all these algorithms use random initializa-
tion, so different runs issue in different partition results, i.e. values of the validation
measures. On the other hand the results hardly depend from the structure of the data,
and no validity index is perfect by itself for a clustering problem. Several experiment
and evaluation are needed that are not the proposition of this work.

PC CE SC S XB DI ADI

K-means 1 NaN 0.095 0.0001 3987.4 0.0139 0.0004
K-medoid| 1 NaN 0.2434 0.0003 Inf 0.0037 0.0036
FCM 0.8282 0.3470 0.9221 0.0008 19.6663 0.0175 0.0119
GK 0.8315 0.3275 0.8697 0.0009 32.1243 0.0081 0.0104
GG 0.9834 0.0285 2.2451 0.0020 2.5983 0.0160 0.0084

Table 1. The numerical values of validity measures
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Fig. 1. Result of k-means and k-medoid algorithms by the synthetic overlapping data with
normalization.

Fig. 1 shows that hard clustering methods also can find a good solution for the
clustering problem, when it is compared with the figures of fuzzy clustering algo-
rithms. On the contrary in Fig. 1 one can see a typical example for the initialization
problem of hard clustering. This caused the differences between the validity index
values in Table 1, e.g. the Xie and Beni’s index is infinity (in “normal case” the
k-medoid returns with almost the same results as K-means). The only difference



Fig. 2. Result of FCM, GK and GG algorithms by the synthetic overlapping data with nor-
malization.

between the results of FCM and GK Fig. 2 stands in the shape of the clusters, while
the Gustafson-Kessel algorithm can find the elongated clusters better. Fig. 2 shows
that the Gath—Geva algorithm returned with a result of three subspaces.

As one can see in Table 1, PC and CE are not applicable for K-means and K-
medoid, while they are hard clustering methods. But that is the reason for the best
results in S, DI (and ADI), which are useful to validate crisp and well separated
clusters. On the score of the values of the two “most popular and used” indexes
for fuzzy clustering (Partition Coefficient and Xie and Beni’s Index) the Gath-Geva
clustering has the very best results for this data set.

3.2 Visualization Results

In order to examine the performance of the proposed clustering methods a well-
known multidimensional classification benchmark problem is presented in this sec-
tion: wine data. This data set comes from the UCI Repository of Machine Learning
Databases. Cause of the too many data points there is no use to show the partition
matrixes in tables, so the results of the n-dimensional clustering was projected into
2-dimension, and the 2-D results were plotted. Considering that projected figures are
only approximations of the real partitioning results, the difference between the orig-
inal and the projected partition matrix is also represented, and on the other hand one
can observe the difference between the PCA, Sammon’s mapping and the Modified
Sammon Mapping too, when these values are comprehended.



The detailed projection methods are based the results of a clustering algorithm.
Using the proposed toolbox the best clustering algorithm can be chosen easily for
this purpose. In the case of the wine data set the fuzzy c-means clustering has the
best stable results correspond to the misclassified objects, so its resulting figures are
shown in the following.

The Wine data contains the chemical analysis of 178 wines grown in the same
region in Italy but derived from three different cultivars (marked with ’.’x’ and
’+”). The problem is to distinguish the three different types based on 13 continuous
attributes derived from chemical analysis.

Sammon

os 08 1

Fig. 3. Result of PCA, Sammon’s Mapping and Fuzzy Sammon Mapping projection by the
Wine data set.

‘P: HU_U*” Z;cv:p“% Z;cvzlﬁl/%* E
PCA 0.1295 0.5033 0.7424 0.1301
Sammon 0.0874 0.5033 0.6574 0.0576
FuzSam 0.0365 0.5033 0.5170 0.0991

Table 2. Relation-indexes on Wine data set.

As Table 2 shows, Fuzzy Sammon Mapping has much better projection results
by the value of P, which measures the difference between the original and projected
membership matrices, than Principal component Analysis, and it is computationally
cheaper than the original Sammon Mapping. So during the evaluation of the parti-



tion the figures created with this projection method were considered. We calculated
the original Sammon’s stress for all the three techniques to be able to compare them.

4 Web-based Version of The Toolbox

This section presents a solution for using the proposed toolbox without any down-
loading and installation. It is an user friendly way via the Internet becouse the users
do not need to have MATLAB and do not need to be competent in programming
languages.

The final goal of data mining is the extraction useful information and knowledge
from data. Knowledge is the ability of people to learn from information and react
faster and better than their competitors. Devices and methods of data acquisition,
management, analyzing and forwarding to the right places can be prime importance
in nowadays intensive market competition.

Corporations have to form their large databases, data warehouses and exter-
nal sources to store knowledge. In the following we want to show the integration
methodology of the data sources and the soft computing tools.

We store data in databases or in a data warehouses (DW), where programs with
well designed GUI support fast and flexible working. If we want to work with the
stored data, we need the above front-end applications to connect the DW, so clent
computers needs these installed applications.

The basic idea is to use a web browser to analyze data of a complex system.
Clients need only a web browser; the workflow application supplies the processing
methods and the connection to the stored data.

So the work of client programs can be fullfilled by developing web based work-
flow applications, which can be maintained easily with system administrators, and
provides the simplicity of installed client programs.

Our main goal is to provide a web — based user friendly interface to our toolbox.
While Matlab Web Server is available in our Department, it is obvious to use the
advantages of this technology. To develop dinamic user — friendly sites we use PHP',
to store user data we use MySQL server. Summarizing the technologies, PHP create
dinamic sites, database store user settings and Matlab Web Server deals with data
processing, so the following componets are needed to create a web based workflow
system with MATLAB:

PHP interpreter (in CGI or in server modul format)
Web server (either Apache or IIS)

Database manager (MySQL)

Matlab Web Server

Web server

U1t’s free, and provides fast development
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Fig.4. MATLAB Web Server Components

Matlab Web Server? is a complex system to online data processing. Figure 4
shows how MATLAB operates over the Web. This structure is pieced together with
the additional PHP applications, and the database storing.

Using this structure there is no need to compile MATLAB algoritms with MAT-
LAB - C compiler, which is a very handy feature, becouse the C compiler couldn’t
be able to deal with structures, so it wasn’t able to use the resources of the Matlab
programming language.

Further benefits of this architecture is that there is no need to deep re-structuring
of the implemented algorimts, only the in and outputs have to be well determined
and the core process method is in a basic M file. Matlab Web Server do the rest, if it
is invoked by a special html form. After processing the data Matlab Web Server can
return the results with using a template file.

5 Conclusions

To meet the growing demands of systematizing the nascent data, a flexible, powerful
tools are needed. The Fuzzy Clustering and Data Analysis Toolbox provides several
approaches to cluster, classify and evaluate wether industrial or experimental data
sets. The software for these operations has been developed with MATLAB, which
is very powerful for matrix-based calculations. The Toolbox provides five different

2 http://www.mathworks.com



types of clustering algorithms, which can be validated by seven validity measures.
High-dimensional data sets can be also visualized with a 2-dimension projection,
hence the toolbox contains three different method for visualization. The web based
version of this tool does not require to have MATLAB and the users’ computers will
be free for other applications because the program runs on the web server and the
results can be downloaded from the server.
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