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Abstract: The paper presents two calculus algorithms for the study of the compressible 
fluid’s stationary movement through profile grids on an axial–symmetric flow–surface. The 
first method is based on an iterative formula developed by the authors to calculate the 
complex conjugate velocity (using the CVBEM algorithm). The second method solves the 
fundamental integral equation in real values by a priori building up the velocity potential’s 
integral equation (BEM method). In this case it is presented the necessity of using the 
Lagrangian interpolation formula through five points for the calculation of the derivatives 
of the velocity potential. In both cases the consecutive approximations can be organized 
simultaneously or successive with respect to parameters ς  (fluid’s density) and h 
(thickness variation of fluid stratum). 
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1 Prezenting the Problem. The Complex Velosity of 
Movement 

We study the direct problem from the hydrodynamics of networks for the 
stationary subsonic movement of the compressible fluid through profile grids on 
an axial-symmetric flow-surface, in variable thickness of stratum. 

The movement is completely defined by the following equations [6]: 

• Continuity equation for the compressible fluid: 

( ) 0vhdiv =⋅⋅ς   (1) 

• Potential (irrational) movement equation: 
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0v rot =    (2) 

• Characteristic equation of state of compressible fluid: 

( )pςς =    (3) 

where: 

- ς  and p are the fluid’s density and pressure, respectively; 

- v  is the fluid’s absolute velocity; 

- h is a function of the thickness variation of fluid stratum. 

Additionally to equations (1), (2), (3), while studying the direct problem, the 
following boundary value conditions are also considered: 

a. The upstream and downstream velocities (
→
∞1V  and 

→
∞2V , respectively) 

of the fluid are considered to be known; 

b. The relative velocity on a flow-surface, thus also on the base profile 0L , 
is a tangential velocity. The transport velocity u  is tangent to the circle 
that contains the current point of 0L . Hence, the considered flow-surface 
is a flow-surface for the absolute motion, thus we have: 

( ) ( ) ( ) 0nwnuwnv
000 LLL =⋅=⋅+=⋅   (4) 

where: 

- n  is the normal versor to the flow-surface; 

- w  is the fluid’s relative velocity. 

c. For ensuring unique solution, it is assumed that in the motion without 
detachments an equivalent condition with the Jukovski-Ciaplighin 
hypothesis is fulfilled, e.g. the equality of velocities in two points 'A  and 

''A  symmetrically situated on the trailing edge, thus we have [6]: 

''' AA
vv =    (5) 

The fundamental equations from the CVBEM method [3] in the problem of the 
compressible fluid’s movement on a axial-symmetric flow–surface, in variable 
thickness of stratum are [6], [7]: 
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where: 

( ) yx ivvzw −=  – is the complex conjugate velocity of motion; 

( ) ψϕ izF +=  is the complex potential of motion, where ϕ is the velocity 
potential and ψ is the flow rate function; 

A – is a fixed point on the base profile 0L ; 

t  – is the grid step; 

Γ – is the circulation around 0L ; 

( )∞∞ += 21m VV
2
1V  – is the asymptotic mean velocity; 
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where l – is the projection of 0L  profile’s frame on the Oy axis. 

Based on the results of [6], [8] in the practical calculus of the complex conjugate 
velocity ( )zw , given by (6), the following iteration formula can be applied: 
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The successive approximation methods can be applied on (9) simultaneously over 
ς  and h, or successively over ς  and h. In the first approximation step it is 

assumed that .const0 == ςς  and .consth = , hence ( )( ) ( )( ) 0qq 00 == ∗∗ ξΔξ , and 

(6) is solved without the double integral. For the velocity ( )( ) ( ) ( )1
y

1
x

1 ivvzw −=  

thus obtained it is possible to determine ( ) ( )11 p, ∗ς . Next, ( )1q∗Δ  is calculated, 

and ( )1
q

w ∗Δ
, is obtained from (10).  

Furthermore, we proceed similarly with the second approximation step, etc. 
Another possibility for solving the fundamental equations (6) is given by the BEM 
method [6], i.e. solving the equations in real variables, using the results of [7]. For 
doing so, we consider the integral equation of the complex potential 
( ) ψϕ izF += , and transform it into an integral equation with real variables, i.e. 

we build the integral equation of the velocity potential ( )y,xϕ . 
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2 The Lagrange Interpolation Polynomial in 
Determining the Velocity Potential of Movement 

2.1 The Lagrange Interpolation Polynomial 

The problem of constructing a continuously defined function from given discrete 
data is unavoidable whenever one wishes to manipulate the data in a way that 
requires information not included explicitly in the data. The relatively easiest and 
in many applications often most desired approach to solve the problem is 
interpolation [2], where an approximating function is constructed in such a way as 
to agree perfectly with the usually unknown original function at the given 
measurement points. In the practical application of the finite calculus of the 
problem of interpolation is the following: given the values of the function for a 
finite set of arguments, to determine the value of the function for some 
intermediate argument[2]. 

A chronological overview of the developments in interpolation theory, from the 
earliest times to the present date could be found in. In this section we focus our 
attention on the theory of the lagrange interpolation polynomial [2], since, as we 
have already mentioned in the proof of proposition 2.3, its usage arises also in our 
calculus algorithm for the study of the compressible fluid’s stationary movement 
through profile grids on an axial–symmetric flow–surface in variable thickness of 
stratum. 

The problem of interpolation consists in the following [2: Given the values yi 
corresponding to xi, i = 0, 1, 2, . . . , n, a function f(x) of the continuous variable x 
is to be determined which satisfies the equation: 

( )ii xfy =  for n,...,2,1,0i = (11)  (11) 

and finally f(x) corresponding to 'xx =  is required. (i.e. 'x different from 
,xi n,1i = .) 

In the absence of further knowledge as to the nature of the function this problem 
is, in the general case, indeterminate, since the values of the arguments other than 
those given can obviously assigned arbitrarily. 

If, however, certain analytic properties of the function be given, it is often possible 
to assign limits to the error committed in calculating the function from values 
given for a limited set of arguments. For example, when the function is known to 
be representable by a polynomial of degree n, the value for any argument is 
completely determinate when the values for n + 1 distinct arguments are given. 

Consider the function [ ] Rx,x:f n0 →  given by the following table of values [2]: 
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kx are called interpolation nodes, and they are not necessary equally distanced 
from each other. We seek to find a polynomial P(x) of degree n that approximates 
the function f(x) in the interpolation nodes, i.e.: 

( ) ( ) n,...,2,1,0k;xPxf kk ==   (12) 

The Lagrange interpolation method finds such a polynomial without solving the 
system (12). 

Theorem 2.1. Lagrange Interpolating Polynomial 

The Lagrange interpolating polynomial is the polynomial of degree n that passes 
through (n + 1) points ( ) ( ) ( )nn1100 xfy,...xfy,xfy === . It is given by the 
relation ([2]): 
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For illustrating the usability of the Lagrange interpolation method through five 
points for our calculus algorithm for the study of the compressible fluid’s 
stationary movement through profile grids on an axial–symmetric flow–surface in 
variable thickness of stratum, namely, for calculating the tangential velocity 

ds
dv ϕ

τ =  (see section 2, proposition 2.3, equation (24)). 
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2.2 Solving the Integral Ecuation of Velocity Potential 

Our purpose is to solve the fundamental equations (6) (obtained from the CVBEM 
method) using (BEM) in real variables. For doing so, we consider the fundamental 
integral–equation of the complex potential ( ) ψϕ izF +=  and transform it into an 
integral equation with real variables, i.e. we build the integral equation of the 
velocity potential φ(s) (ψ(s) is the flow rate function). 

Theorem 2.2. [6], [11] In the subsonic motion of the compressible fluid through 
the profile grid, on an axial–symmetric flow–surface, in variable thickness of 
stratum, the velocity potential φ(s), s ∈ L0 is the solution of the integral equation 
(16): 

( ) ( ) ( ) ( ) ( ) ( ) ηξσσσ
σ
σσϕϕ dd,sNqsbd

d
,sdMs

0
0 DL

∫∫∫
−
∗

+=+  (16) 

where: 

s (x0, y0) and σ(ξ,η) are the curvilinear coordinates of the fixed point A on the L0 
base profile; 
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vmx, vmy - are the components of the asymptotic mean velocity vm. 

Proposition 2.1. [7],[8] In the case of an axial-subsonic movement of a perfect 
and compressible fluid through profile grids, the flow rate function is determined 
from the boundary condition (6): 

( ) ( )              ,Ru,ds
R
Rspus 0

s

0
0

0
0 ωψ =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅= ∫ ∗  (18) 

where: 

• ω is the angular rotation velocity of the profile grid; 

• R0 defines the origin of the axis system related to the turbine’s axis. 
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Equation (16) is an integro–differential equation. In this section, we will show a 
possibility of solving this equation applying the method of successive 
approximation (the iteration method), using also the result from [6] about the 
order of the term containing the double integral expression: 

( ) ( ) ( ) ηξσσϕ dd,sNqs

0
D

q ∫∫
−
∗

=   (19) 

Proposition 2.2. [6], [8] In the case of the subsonic movement of the compressible 
fluid through the profile grid on an axial–symmetric flow–surface, in variable 
thickness of stratum, the integral equation of the velocity potential ℜ→−

∗0
D:ϕ  

is solvable by applying the method of successive approximations w.r.t. the 
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where: 

• γ is the adiabatic constant; 

• c0 is the sound velocity in the zero velocity point; 

• vτ and vn are, respectively, the tangential and normal velocities on L0. 

In the first approximation it is assumed that ς = ς0 = constant and p* = p*(0) = 
constant. Thus, from (7), it results that q(0)(σ) = 0. Hence, in the integral equation 
(4) the double integral (19) is neglected and results the following Fredholme 
integral equation of second type, with continuous nucleus: 

( ) ( ) ( ) ( )sbd
d

,sdMss I

L

II

0

=+ ∫ σ
σ
σϕϕ  (21) 

From solving equation (21) we obtain φI , and furthermore from (18), (20), (24)  
ψI, ςI are obtained. Finally, using the relation: 

( ) ∗∗ ⋅−=
⋅

= plngradgradq,hp
0

ϕσ
ς
ς  (22) 

a p*I and ( )σIq  are determined. 
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In the second iteration p* = p*I is assumed and for the determination of φII(s) the 
following Fredholme integral equation of second type, with continuous nucleus, 
will be solved: 

( ) ( ) ( ) ( ) ( ) ( ) ηξσσσ
σ
σσϕϕ dd,sNqsbd

d
,sdMs

0
0 D

III

L

IIII ∫∫∫
−
∗

+=+  (23) 

where a φI and bII(s) are previously calculated from (18) and (17), respectively. 

From solving equation (23), we obtain φII . Furthermore, from (18), (20), (24) and 
(22) ψII, ςII, IIp∗ and ( )σIIq  are obtained, respectively. Next, the third 
approximation might be done by assuming p*=p*II, and so on. 

Proposition 2.3. [7] Having given the values of the velocity potential on each 
element of the L0 profile’s division, the tangential velocity vτ  may be calculated in 
each division element of the L0 basic profile’s boundary by the formula, given by 
the Lagrange  interpolation method through five points: 
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where n denotes the number of division elements and by si we refer to the ith  
element of the division of L0. 

To ensure the practical functionality of proposition 2.2, i.e. to indicate the solving 
method of the Fredholme integral equation of second type obtained in each 
approximation step (equation (18), (23) ), let us formulate and prove two more 
propositions. 

Proposition 2.4. [8], [9] In the first approximation step, solving the velocity 
potential’s Fredholme integral equation of second type is reduced to the solving of 
four systems of linear algebraic equations. 

Proof. Using the superposition rule of potential streams, we seek the solution of 
the Fredholme integral equation of second type (9) to be of the form: 

o00
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I
3my

I
2mx
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I Ru,uVV ωϕΓϕϕϕϕ =+++=  (25) 

where 41k,I
k ÷=ϕ  are the solutions of the system (26) of integral 

equations: 
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where: 

( ) ( ) ( )[ ] σ
σ

σψψ d
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4 ∫ −=    (27) 

The integral equations (26) could be solved using the Bogoliubov-Krîlov method, 
conform to which, solving each integral equation reduces to solving a system of 
linear algebraic equations. Conform to the method, using an arbitrary division, we 
partition the boundary of L0 in n subintervals Δs = Δσ. Note, that the chosen 
division might be not uniform, for instance at the trailing or the leading edge, 
where the variation of the function I

kϕ  is stronger from point– to–point, the length 

of subintervals might be shorter. In each subinterval, the function I
kϕ  is assumed 

to be constant and equal to I
kjϕ  where j represents the number of the middle–

points of the considered subintervals. If the first division–points are debited by 
even numbers, and the division–points of the middle of the subintervals by odd 
numbers, then, conform to the approximation method, the integral equations (26) 
can be approximated by the following systems of linear algebraic equations: 
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Solving the algebraic system (28), we obtain I
kjϕ  in n distinct point from the 

boundary of L0. Finally, from equations (25), I
iϕ  is determined in each point of 

the boundary’s division. 

Proposition 2.5. [8], [9] In the second approximation step, the Fredholme 
integral equation (11) of the velocity potential is reduced to solving four systems 
of linear algebraic equations. 

Using the numeric method presented in proposition 2.4, by applying the 
Bogoliubov-Krîlov method, is reduced to solving systems of linear algebraic 
equations. 

These systems of linear algebraic equations will have the form: 

4,3,2,1k

1n2,.....,5,3,1i,bM I
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II
kj

II
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=
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where II
i4

II
i3

II
i2

II
i1 b,b,b,b        are obtained by using the Simpson formula for handling 

the double integral. 

Solving the algebraic system (30), we obtain II
kiϕ  in n distinct point from the 

boundary of L0. Finally n,1i,II
i =   ϕ  is determined in each point of the 

boundary’s division. 

Conclusion 

We have shown some practical aspects of the usage of the calculus algorithm for 
the study of the compressible fluid’s stationary movement through profile grids, 
on an axial–symmetric flow–surface, in variable thickness of stratum, namely : 

• the usage of the boundary element method with real values; 

• the applicability of the successive approximation method w.r.t. the 
parameters ς (fluid’s density) and h (thickness variation of fluid stratum) 
for solving the integral equation of the velocity potential; 

• the usage of the Lagrangian interpolation formula through five points for 
calculating the derivatives of the velocity potential. 

Regarding practical applicability of our algorithm, our plans for the near future 
are: 

• make more test cases w.r.t. several input (geometrical and hydrodynamical) 
values of the velocity potentials taken from practical experiments involving 
profile grids; 

• study the possibility of applying the algorithm (i.e. the approximation 
methods) for the calculation of other fluid–characteristics. 
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