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Abstract: In this paper we will show some examples for possibilistic correlation.
In particular, we will show (i) how the possibilistic correlation coefficient of two
linear marginal possibility distributions changes from zero to -1/2, and from -1/2
to -3/5 by taking out bigger and bigger parts from the level sets of a their joint
possibility distribution; (ii) how to compute the autocorrelation coefficient of fuzzy
time series with linear fuzzy data.

1 Introduction

A fuzzy number A is a fuzzy set R with a normal, fuzzy convex and contin-
uous membership function of bounded support. The family of fuzzy numbers
is denoted by F . Fuzzy numbers can be considered as possibility distributions.
A fuzzy set C in R2 is said to be a joint possibility distribution of fuzzy num-
bers A,B ∈ F , if it satisfies the relationships max{x | C(x, y)} = B(y) and
max{y | C(x, y)} = A(x) for all x, y ∈ R. Furthermore, A and B are called



the marginal possibility distributions of C. Let A ∈ F be fuzzy number with a γ-
level set denoted by [A]γ = [a1(γ), a2(γ)], γ ∈ [0, 1] and let Uγ denote a uniform
probability distribution on [A]γ , γ ∈ [0, 1].

In possibility theory we can use the principle of expected value of functions on
fuzzy sets to define variance, covariance and correlation of possibility distributions.
Namely, we equip each level set of a possibility distribution (represented by a fuzzy
number) with a uniform probability distribution, then apply their standard proba-
bilistic calculation, and then define measures on possibility distributions by inte-
grating these weighted probabilistic notions over the set of all membership grades.
These weights (or importances) can be given by weighting functions. A function
f : [0, 1] → R is said to be a weighting function if f is non-negative, monotone
increasing and satisfies the following normalization condition

∫ 1
0 f(γ)dγ = 1.

Different weighting functions can give different (case-dependent) importances to
level-sets of possibility distributions.

In 2009 we introduced a new definition of possibilistic correlation coefficient (see
[2]) that improves the earlier definition introduced by Carlsson, Fullér and Majlen-
der in 2005 (see [1]).

Definition ([2]). The f -weighted possibilistic correlation coefficient of A,B ∈ F
(with respect to their joint distribution C) is defined by

ρf (A,B) =
∫ 1

0
ρ(Xγ , Yγ)f(γ)dγ (1)

where

ρ(Xγ , Yγ) =
cov(Xγ , Yγ)√

var(Xγ)
√

var(Yγ)

and, whereXγ and Yγ are random variables whose joint distribution is uniform on
[C]γ for all γ ∈ [0, 1], and cov(Xγ , Yγ) denotes their probabilistic covariance.

In other words, the f -weighted possibilistic correlation coefficient is nothing else,
but the f -weighted average of the probabilistic correlation coefficients ρ(Xγ , Yγ)
for all γ ∈ [0, 1].

Consider the case, when A(x) = B(x) = (1 − x) · χ[0,1](x), for x ∈ R, that
is [A]γ = [B]γ = [0, 1 − γ], for γ ∈ [0, 1]. Suppose that their joint possibility
distribution is given by F (x, y) = (1− x− y) · χT (x, y), where

T =
{
(x, y) ∈ R2 | x ≥ 0, y ≥ 0, x+ y ≤ 1

}
.

Then we have [F ]γ =
{
(x, y) ∈ R2 | x ≥ 0, y ≥ 0, x+ y ≤ 1− γ

}
.



Figure 1: Illustration of joint possibility distribution F .

This situation is depicted on Fig. 1, where we have shifted the fuzzy sets to get a
better view of the situation. In this case the f -weighted possibilistic correlation of
A and B is computed as (see [2] for details),

ρf (A,B) =
∫ 1

0
−1

2
f(γ)dγ = −1

2
.

Consider now the case when A(x) = B(x) = x · χ[0,1](x) for x ∈ R, that is
[A]γ = [B]γ = [γ, 1], for γ ∈ [0, 1]. Suppose that their joint possibility distribution
is given by

W (x, y) = max{x+ y − 1, 0}.

Then we get

ρf (A,B) = −
∫ 1

0

1
2
f(γ)dγ = −1

2
.

We note here thatW is nothing else but the Lukasiewitz t-norm, or in the statistical
literature, W is generally referred to as the lower Fréchet-Hoeffding bound for
copulas.



2 A transition from zero to -1/2

Suppose that a family of joint possibility distribution of A and B (where A(x) =
B(x) = (1− x) · χ[0,1](x), for x ∈ R) is defined by

Cn(x, y) =


1− x− n−1

n y, if 0 ≤ x ≤ 1, x ≤ y, n− 1
n

y + x ≤ 1

1− n−1
n x− y, if 0 ≤ y ≤ 1, y ≤ x, n− 1

n
x+ y ≤ 1

0, otherwise

In the following, for simplicity, we well write C instead of Cn. A γ-level set of C
is computed by

[C]γ =
{

(x, y) ∈ R2 | 0 ≤ x ≤ n

2n− 1
(1− γ), 0 ≤ y ≤ 1− γ − n− 1

n
x

}⋃
{

(x, y) ∈ R2 | n

2n− 1
(1− γ) ≤ x ≤ 1− γ, 0 ≤ n− 1

n
y ≤ 1− γ − x

}
.

The density function of a uniform distribution on [C]γ can be written as

f(x, y) =


1∫

[C]γ dxdy
, if (x, y) ∈ [C]γ

0 otherwise
=


2n− 1
n(1− γ)2

, if (x, y) ∈ [C]γ

0 otherwise

We can calculate the marginal density functions:

f1(x) =


(2n− 1)(1− γ − x)

(n− 1)(1− γ)2
, if

n

2n− 1
(1− γ) ≤ x ≤ 1− γ

(2n− 1)(1− γ − n−1
n x)

n(1− γ)2
, if 0 ≤ x ≤ n

2n− 1
(1− γ)

0 otherwise

and,

f2(y) =


(2n− 1)(1− γ − y)

(n− 1)(1− γ)2
, if

n

2n− 1
(1− γ) ≤ y ≤ 1− γ

(2n− 1)(1− γ − n−1
n y)

n(1− γ)2
, if 0 ≤ y ≤ n

2n− 1
(1− γ)

0 otherwise



We can calculate the probabilistic expected values of the random variables Xγ and
Yγ , whose joint distribution is uniform on [C]γ for all γ ∈ [0, 1] as,

M(Xγ) =
2n− 1
n(1− γ)2

∫ n(1−γ)
2n−1

0
x(1− γ − n− 1

n
x)dx

+
2n− 1

(n− 1)(1− γ)2

∫ 1−γ

n(1−γ)
2n−1

x(1− γ − x)dx =
(1− γ)(4n− 1)

6(2n− 1)

and, M(Yγ) =
(1− γ)(4n− 1)

6(2n− 1)
.

(We can easily see that for n = 1 we have M(Xγ) =
1− γ

2
, and for n → ∞ we

find M(Xγ)→
1− γ

3
.) We calculate the variations of Xγ and Yγ as,

M(X2
γ) =

2n− 1
n(1− γ)2

∫ n(1−γ)
2n−1

0
x2(1− γ − n− 1

n
x)dx

+
2n− 1

(n− 1)(1− γ)2

∫ 1−γ

n(1−γ)
2n−1

x2(1− γ − x)dx

=
(1− γ)2((2n− 1)3 + 8n3 − 6n2 + n)

12(2n− 1)3
.

(We can easily see that for n = 1 we get M(X2
γ) =

(1− γ)2

3
, and for n→∞ we

find M(X2
γ)→

(1− γ)2

6
.) Furthermore,

var(Xγ) = M(X2
γ)−M(Xγ)2 =

(1− γ)2((2n− 1)3 + 8n3 − 6n2 + n)
12(2n− 1)3

− (1− γ)2(4n− 1)2

36(2n− 1)2
=

(1− γ)2(2(2n− 1)2 + n)
36(2n− 1)2

.

And similarly we obtain

var(Yγ) =
(1− γ)2(2(2n− 1)2 + n)

36(2n− 1)2
.

(We can easily see that for n = 1 we get var(Xγ) =
(1− γ)2

12
, and for n→∞ we



find var(Xγ)→
(1− γ)2

18
.) And,

cov(Xγ , Yγ) = M(XγYγ)−M(Xγ)M(Yγ)

=
(1− γ)2n(4n− 1)

12(2n− 1)2
− (1− γ)2(1− n)(4n− 1)

36(2n− 1)2
.

(We can easily see that for n = 1 we have cov(Xγ , Yγ) = 0, and for n → ∞ we

find cov(Xγ , Yγ) → −
(1− γ)2

36
.) We can calculate the probabilisctic correlation

of the random variables,

ρ(Xγ , Yγ) =
cov(Xγ , Yγ)√

var(Xγ)
√

var(Yγ)
=

(1− n)(4n− 1)
2(2n− 1)2 + n

.

(We can easily see that for n = 1 we have ρ(Xγ , Yγ) = 0, and for n→∞ we find

ρ(Xγ , Yγ) → −
1
2

.) And finally the f -weighted possibilistic correlation of A and
B is computed as,

ρf (A,B) =
∫ 1

0
ρ(Xγ , Yγ)f(γ)dγ =

(1− n)(4n− 1)
2(2n− 1)2 + n

.

We obtain, that ρf (A,B) = 0 for n = 1 and if n→∞ then ρf (A,B)→ −1
2

.

3 A transition from -1/2 to -3/5

Suppose that the joint possibility distribution of A and B (where A(x) = B(x) =
(1− x) · χ[0,1](x), for x ∈ R) is defined by

Cn(x, y) = (1− x− y) · χTn(x, y),

where

Tn =
{

(x, y) ∈ R2 | x ≥ 0, y ≥ 0, x+ y ≤ 1,
1

n− 1
x ≥ y

}⋃
{
(x, y) ∈ R2 | x ≥ 0, y ≥ 0, x+ y ≤ 1, (n− 1)x ≤ y

}
.

In the following, for simplicity, we well write C instead of Cn. A γ-level set of C
is computed by

[C]γ =
{

(x, y) ∈ R2 | 0 ≤ x ≤ 1
n

(1− γ), (n− 1)x ≤ y ≤ 1− γ − x
}⋃



{
(x, y) ∈ R2 | 0 ≤ y ≤ 1

n
(1− γ), (n− 1)y ≤ x ≤ 1− γ − y

}
.

The density function of a uniform distribution on [C]γ can be written as

f(x, y) =


1∫

[C]γ dxdy
, if (x, y) ∈ [C]γ

0 otherwise
=

{ n

(1− γ)2
, if (x, y) ∈ [C]γ

0 otherwise

We can calculate the marginal density functions:

f1(x) =



n(1− γ − nx+ x
n−1)

(1− γ)2
, if 0 ≤ x ≤ 1− γ

n
nx

(1− γ)2(n− 1)
, if

(1− γ)
n

≤ x ≤ (n− 1)(1− γ)
n

n(1− γ − x)
(1− γ)2

, if
(n− 1)(1− γ)

n
≤ x ≤ 1− γ

0 otherwise

and,

f2(y) =



n(1− γ − ny + y
n−1)

(1− γ)2
, if 0 ≤ y ≤ 1− γ

n
ny

(1− γ)2(n− 1)
, if

(1− γ)
n

≤ y ≤ (n− 1)(1− γ)
n

n(1− γ − y)
(1− γ)2

, if
(n− 1)(1− γ)

n
≤ y ≤ 1− γ

0 otherwise

We can calculate the probabilistic expected values of the random variables Xγ and
Yγ , whose joint distribution is uniform on [C]γ for all γ ∈ [0, 1] as

M(Xγ) =
n

(1− γ)2

∫ 1−γ
n

0
x(1− γ − nx+

x

n− 1
)dx

+
n

(1− γ)2

∫ (n−1)(1−γ)
n

1−γ
n

x2

n− 1
dx+

n

(1− γ)2

∫ 1−γ)

(n−1)(1−γ)
n

x(1− γ − x)dx

=
1− γ

3
.



That is, M(Yγ) =
1− γ

3
. We calculate the variations of Xγ and Yγ as,

M(X2
γ) =

n

(1− γ)2

∫ 1−γ
n

0
x2(1− γ − nx+

x

n− 1
)dx

+
n

(1− γ)2

∫ (n−1)(1−γ)
n

1−γ
n

x3

n− 1
dx

+
n

(1− γ)2

∫ 1−γ)

(n−1)(1−γ)
n

x2(1− γ − x)dx

=
(1− γ)2(3n2 − 3n+ 2)

12n2
.

and,

var(Xγ) = M(X2
γ)−M(Xγ)2 =

(1− γ)2(3n2 − 3n+ 2)
12n2

− (1− γ)2

9

=
(1− γ)2(5n2 − 9n+ 6)

36n2
.

And, similarly, we obtain

var(Yγ) =
(1− γ)2(5n2 − 9n+ 6)

36n2
.

From

cov(Xγ , Yγ) = M(XγYγ)−M(Xγ)M(Yγ) =
(1− γ)2(3n− 2)

12n2
− (1− γ)2

9
,

we can calculate the probabilisctic correlation of the reandom variables:

ρ(Xγ , Yγ) =
cov(Xγ , Yγ)√

var(Xγ)
√

var(Yγ)
= −−3n2 + 7n− 6

5n2 − 9n+ 6
.

And finally the f -weighted possibilistic correlation of A and B:

ρf (A,B) =
∫ 1

0
ρ(Xγ , Yγ)f(γ)dγ = −−3n2 + 7n− 6

5n2 − 9n+ 6

We obtain, that for n = 2

ρf (A,B) = −1
2
,

and if n→∞, then

ρf (A,B)→ −3
5
.

We note that in this extremal case the joint possibility distribution is nothing else
but the marginal distributions themselves, that is, C∞(x, y) = 0, for any interior
point (x, y) of the unit square.



4 A trapezoidal case

Consider the case, when

A(x) = B(x) =


x, if 0 ≤ x ≤ 1
1, if 1 ≤ x ≤ 2

3− x, if 2 ≤ x ≤ 3
0, otherwise

for x ∈ R, that is [A]γ = [B]γ = [γ, 3− γ], for γ ∈ [0, 1]. Suppose that their joint
possibility distribution is given by:

C(x, y) =


y, if 0 ≤ x ≤ 3, 0 ≤ y ≤ 1, x ≤ y, x ≤ 3− y
1, if 1 ≤ x ≤ 2, 1 ≤ y ≤ 2, x ≤ y
x, if 0 ≤ x ≤ 1, 0 ≤ y ≤ 3, y ≤ x, x ≤ 3− y
0, otherwise

Then [C]γ =
{
(x, y) ∈ R2 | γ ≤ x ≤ 3− γ, γ ≤ y ≤ 3− x

}
.

The density function of a uniform distribution on [F ]γ can be written as

f(x, y) =


1∫

[C]γ dxdy
, if (x, y) ∈ [C]γ

0 otherwise
=


2

(3− 2γ)2
, if (x, y) ∈ [C]γ

0 otherwise

The marginal functions are obtained as

f1(x) =


2(3− γ − x)

(3− 2γ)2
, if γ ≤ x ≤ 3− γ

0 otherwise

and,

f2(y) =


2(3− γ − y)
(3− 2γ)2

, if γ ≤ y ≤ 3− γ

0 otherwise

We can calculate the probabilistic expected values of the random variables Xγ and
Yγ , whose joint distribution is uniform on [C]γ for all γ ∈ [0, 1] :

M(Xγ) =
2

(3− 2γ)2

∫ 3−γ

γ
x(3− γ − x)dx =

γ + 3
3

and,

M(Yγ) =
2

(3− 2γ)2

∫ 3−γ

γ
y(3− γ − y)dx =

γ + 3
3



We calculate the variations of Xγ and Yγ from the formula

var(X) = M(X2)−M(X)2

as

M(X2
γ) =

2
(3− 2γ)2

∫ 3−γ

γ
x2(3− γ − x)dx =

2γ2 + 9
6

and,

var(Xγ) = M(X2
γ)−M(Xγ)2 =

2γ2 + 9
6

− (γ + 3)2

9
=

(3− 2γ)2

18
.

And similarly we obtain

var(Yγ) =
(3− 2γ)2

18
.

Using the relationship,

cov(Xγ , Yγ) = M(XγYγ)−M(Xγ)M(Yγ) = −(3− 2γ)2

36
,

we can calculate the probabilisctic correlation of the random variables:

ρ(Xγ , Yγ) =
cov(Xγ , Yγ)√

var(Xγ)
√

var(Yγ)
= −1

2
.

And finally the f -weighted possibilistic correlation of A and B is,

ρf (A,B) = −
∫ 1

0

1
2
f(γ)dγ = −1

2
.

5 Time Series With Fuzzy Data

A time series with fuzzy data is referred to as fuzzy time series (see [3]). Consider
a fuzzy time series indexed by t ∈ (0, 1],

At(x) =

{
1− x

t
, if 0 ≤ x ≤ t

0 otherwise
and A0(x) =

{
1, if x = 0
0 otherwise

It is easy to see that in this case,

[At]γ = [0, t(1− γ)], γ ∈ [0, 1].



If we have t1, t2 ∈ [0, 1], then the joint possibility distribution of the corresponding
fuzzy numbers is given by:

C(x, y) =
(

1− x

t1
− y

t2

)
· χT (x, y),

where

T =
{

(x, y) ∈ R2 | x ≥ 0, y ≥ 0,
x

t1
+
y

t2
≤ 1
}
.

Then [C]γ =
{

(x, y) ∈ R2 | x ≥ 0, y ≥ 0,
x

t1
+
y

t2
≤ 1− γ

}
.

The density function of a uniform distribution on [C]γ can be written as

f(x, y) =


1∫

[C]γ dxdy
, if (x, y) ∈ [C]γ

0 otherwise

That is,

f(x, y) =


2

t1t2(1− γ)2
, if (x, y) ∈ [C]γ

0 otherwise

The marginal functions are obtained as

f1(x) =


2(1− γ − x

t1
)

t1(1− γ)2
, if 0 ≤ x ≤ t1(1− γ)

0 otherwise

and,

f2(y) =


2(1− γ − y

t2
)

t2(1− γ)2
, if 0 ≤ y ≤ t2(1− γ)

0 otherwise

We can calculate the probabilistic expected values of the random variables Xγ and
Yγ , whose joint distribution is uniform on [C]γ for all γ ∈ [0, 1] :

M(Xγ) =
2

t1(1− γ)2

∫ t1(1−γ)

0
x(1− γ − x

t1
)dx =

t1(1− γ)
3

and

M(Yγ) =
2

t2(1− γ)2

∫ t2(1−γ)

0
y(1− γ − y

t2
)dx =

t2(1− γ)
3

.



We calculate now the variations of Xγ and Yγ as,

M(X2
γ) =

2
t1(1− γ)2

∫ t1(1−γ)

0
x2(1− γ − x

t1
)dx =

t21(1− γ)2

6

and,

var(Xγ) = M(X2
γ)−M(Xγ)2 =

t21(1− γ)2

6
− t21(1− γ)2

9
=
t21(1− γ)2

18
.

And, in a similar way, we obtain,

var(Yγ) =
t22(1− γ)2

18
.

From,

cov(Xγ , Yγ) = − t1t2(1− γ)
2

36
,

we can calculate the probabilisctic correlation of the reandom variables,

ρ(Xγ , Yγ) =
cov(Xγ , Yγ)√

var(Xγ)
√

var(Yγ)
= −1

2
.

The f -weighted possibilistic correlation of At1 and At2 ,

ρf (At1 , At2) =
∫ 1

0
−1

2
f(γ)dγ = −1

2
.

So, the autocorrelation function of this fuzzy time series is constant. Namely,

R(t1, t2) = −1
2
,

for all t1, t2 ∈ [0, 1].
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