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Abstract: Fuzzy Q-learning, the fuzzy extension of the Reinforcement Learning (RL) is a 
well known topic in computational intelligence. It can be used to tackle control problems in 
unknown continuous environments without defining an exact method on how to solve it 
explicitly. In the RL concept the problem needed to be solved is hidden in the feedback of 
the environment, called reward or punishment (positive or negative reward). From these 
rewards the system can learn which action is considered to be the best choice in a given 
state. One of the most frequently applied RL method is the “Q-learning”. The goal of the 
Q-learning method is to find an optimal policy for the system by building the state-action-
value function. The state-action-value-function is a function of the expected return (a 
function of the cumulative reinforcements), related to a given state and a taken action 
following the optimal policy. The original Q-learning method was introduced for discrete 
states and actions. With the application of fuzzy reasoning the method can be adapted for 
continuous environment, called Fuzzy Q-learning (FQ-Learning). Traditional Fuzzy Q-
learning embeds the 0-order Takagi-Sugeno fuzzy inference and hence inherits the 
requirement of the state-action-value-function representation to be a complete fuzzy rule 
base. An extension of the traditional fuzzy Q-learning method with the capability of 
handling sparse fuzzy rule bases is already introduced by the authors, which suggests a 
Fuzzy Rule Interpolation (FRI) method, namely the FIVE (Fuzzy rule Interpolation based 
on Vague Environment) technique to be the reasoning method applied with Q-learning 
(FRIQ-learning). The main goal of this paper is the introduction of a method which can 
construct the requested FRI fuzzy model in a reduced size. The suggested reduction is 
achieved by incremental creation of an intentionally sparse fuzzy rule base. 

Keywords: reinforcement learning, fuzzy Q-learning, fuzzy rule interpolation, fuzzy rule 
base reduction 
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1 Introduction 

Reinforcement learning methods can help in situations, where the task to be 
solved is hidden in the feedback of the environment, i.e. in the positive or negative 
rewards (the negative reward is often called a punishment) provided by the 
environment. The rewards are calculated by an algorithm created especially for 
expressing the task needed to be solved. Based on the rewards of the environment 
RL methods are approximating the value of each possible action in all the 
reachable states. Therefore RL methods can solve problems where a priory 
knowledge can be expressed in the form what is needed to be achieved, not in how 
to solve the problem directly. Reinforcement learning methods are a kind of trial-
and-error style methods adapting to dynamic environment through incremental 
iterations. The primary ideas of reinforcement learning techniques (dynamical 
system state and the idea of “optimal return”, or “value” function) are inherited 
from optimal control and dynamic programming [3]. A common goal of the 
reinforcement learning strategies is to gather an optimal policy by constructing the 
state-value- or action-value-function [19]. The state-value-function Vπ(s), is a 
function of the expected return (a function of the cumulative reinforcements), 
related to a given state Ss ∈  as a starting point, following a given policy π. 
These rewards, or punishments (reinforcements) are the expression of the desired 
final goal of the learning agent as a kind of evaluation following the previous 
action (in contrast to the instructive manner of error feedback based 
approximation techniques, for example the gradient descent optimisation). The 
optimal policy is basically the description of the agent behaviour, in the form of 
mapping between the agent states and the corresponding suitable actions. The 
action-value function Qπ(s,a) is a function of the expected return, in case of taking 
action  sAa∈  in state s following policy π. In possession of the action-value-
function, the optimal (greedy) policy, which always takes the optimal (the greatest 
estimated value) action in every state, can be constructed as [19]: 

( ) ( )asQs
sAa

,maxarg ππ
∈

=  (1) 

For the estimation of the optimal policy, the action-value function Qπ(s,a) should 
be approximated. Approximating the latter function is a complex task given that 
both the number of possible states and the number of the possible  
actions could be an extremely high value. Evaluating all the possibilities could 
take a considerable amount of computing resources and computational time, 
which is a significant drawback of reinforcement learning. However there are 
some cases where a distributed approach with continuous reward functions can 
reduce these resource needs [15]. Generally reinforcement learning methods can 
lead to results in practically acceptable time only in relatively small state and 
action spaces. 
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Adapting fuzzy models the discrete Q-learning can be extended to continuous 
state and action space, which in case of suitably chosen states can lead to the 
reduction of the size of the state-action space [12].  

2 Q-learning and Fuzzy Q-learning 

Q-learning is a reinforcement learning method which has the purpose of finding 
the fixed-point solution (Q) of the Bellman Equation [3] via iteration. In the case 
of discrete Q-Learning [23], the action-value-function is approximated by the 
following iteration: 
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UuI,i ∈∀∈∀ , where 1~ +k
ui,Q  is the k+1 iteration of the action-value taking the 

uth action Au in the ith state Si
 

, Sj is the new (jth) observed state, gi,u,j is the 

observed reward completing the ji SS →  state-transition, γ  is the discount 

factor and [ ]0,1∈k
ui,α  is the step size parameter (can vary during the iteration 

steps), I is the set of the discrete possible states and U is the set of the discrete 
possible actions. There are various existing solutions [1], [4], [5], [6] for applying 
this iteration to continuous environment by adopting fuzzy inference (called Fuzzy 
Q-Learning). Most commonly the simplest FQ-Learning method, the 0-order 
Takagi-Sugeno Fuzzy Inference model is adapted. Hereby in this paper the latter 
one is studied (a slightly modified, simplified version of the Fuzzy Q-Learning 
introduced in [1] and [6]). In this case for characterizing the value function Q(s,a) 
in continuous state-action space, the 0-order Takagi-Sugeno Fuzzy Inference 
System approximation ( )as,Q~  is adapted in the following way: 

If s is iS  And a is uA  Then ( ) ui,Q=as,Q~ , UuI,i ∈∈ , (3) 

where iS  is the label of the ith membership function of the n dimensional state 

space, uA  is the label of the uth membership function of the one dimensional 

action space, ui,Q  is the singleton conclusion and ( )as,Q~  is the approximated 
continuous state-action-value function. Having the approximated state-action-
value function ( )as,Q~ , the optimal policy can be constructed by function (1). 
Setting up the antecedent fuzzy partitions to be Ruspini partitions, the zero-order 
Takagi-Sugeno fuzzy inference forms the following approximation function: 
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where ( )as,Q~  is the approximated state-action-value function, )(sn,μ nni
 is the 

membership value of the in
th state antecedent fuzzy set at the nth dimension of the 

N dimensional state antecedent universe at the state observation sn, (a)μu  is the 
membership value of the uth action antecedent fuzzy set of the one dimensional 
action antecedent universe at the action selection a, uiiq

Ni …21
 is the value of the 

singleton conclusion of the u,i,,i,i N2 ...1
-th fuzzy rule. Applying the 

approximation formula of the Q-learning (2) for adjusting the singleton 
conclusions in (4), leads to the following function:  
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where 1
...21

+k
uiiq

Ni
 is the k+1 iteration of the singleton conclusion of the uiii N...21

th 

fuzzy rule taking action Au in state Si, Sj is the new observed state, gi,u,j is the 

observed reward completing the ji SS →  state-transition, γ  is the discount 

factor and [ ]0,1∈k
ui,α  is the step size parameter. The (a)μ)(sn,μ unni

⋅  is the 

partial derivative of the conclusion of the 0-order Takagi-Sugeno fuzzy inference 
( )as,Q~  with respect to the fuzzy rule consequents qu,i according to (4). This partial 

derivative is required for the applied steepest-descent optimization method. The 
1~ +k

vj,Q  and k
ui,Q~  action-values can be approximated by equation (4). 

3 FRIQ-learning 

The Fuzzy Rule Interpolation based Q-learning (FRIQ-learning) is an extension of 
the traditional fuzzy Q-learning method with the capability of handling sparse 
fuzzy rule bases. In the followings the FIVE FRI embedded FRIQ-learning 
(originally introduced in [22]) will be studied in more details. 
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3.1 The FRI method FIVE 

Numerous FRI methods can be found in the literature. A comprehensive overview 
of the recent methods is presented in [2]. FIVE is one of the various existing 
techniques.  

 

Figure 1 
Approximate scaling function s generated by non-linear interpolation (on the right). On the left hand 

side the partition is shown as the approximate scaling function describes it (A’, B’). 

 
 

 

Figure 2 
Interpolation of two fuzzy rules rules (Ri: Ai→Bi),  by the Shepard operator based FIVE, and for 

comparison the min-max CRI with COG defuzzification. 

 

FIVE is an application oriented FRI method (introduced in [11], [9] and [13]), 
hence it is fast and serves crisp conclusions directly so there is no need for an 
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additional defuzzification step in the process. Also FIVE has been already proved 
to be capable of serving the requirements of practical applications [21]. 

The main idea of the FIVE is based on the fact that most of the control 
applications serves crisp observations and requires crisp conclusions from the 
controller. Adopting the idea of the vague environment (VE) [8], FIVE can handle 
the antecedent and consequent fuzzy partitions of the fuzzy rule base by scaling 
functions [8] and therefore turn the fuzzy interpolation to crisp interpolation. The 
idea of a VE is based on the similarity (in other words: indistinguishability) of the 
considered elements. In VE the fuzzy membership function μA(x) is indicating the 
level of similarity of x to a specific element a that is a representative or 
prototypical element of the fuzzy set μA(x), or, equivalently, as the degree to 
which x is indistinguishable from a [8]. Therefore the α-cuts of the fuzzy set μA(x) 
are the sets which contain the elements that are (1-α)-indistinguishable from a. 
Two values in a VE are ε-distinguishable if their distance is greater than ε. The 
distances in a VE are weighted distances. The weighting factor or function is 
called scaling function (factor) [8]. If a VE of a fuzzy partition (the scaling 
function or at least the approximate scaling function [11], [13]) exists, the member 
sets of the fuzzy partition can be characterized by points in that VE (see e.g. 
scaling function s on Figure 1). This way any crisp interpolation, extrapolation, or 
regression method can be adapted very simply for FRI [11], [13]. FIVE integrates 
the Shepard operator based interpolation (first introduced in [17]) method (see e.g. 
Figure 2.) because of its simple multidimensional applicability. Precalculating and 
caching of the consequent and antecedent sides of the vague environment is 
straightforward, speeding up the method considerably. 

The source code of the FIVE FRI along with other FRI methods is freely available 
as a MATLAB FRI Toolbox [7]. These can be downloaded from [24] and [25] for 
free of charge. 

3.2 FRIQ-learning based on FIVE 

The introduction of FIVE FRI in FQ-learning allows the omission of fuzzy rules 
(i.e. action-state values in this case) from the rule base and also gains the 
potentiality of applying the proposed method in higher state dimensions with a 
reduced rule-base sized describing the action-state space. An example for effective 
rule base reduction by FRI FIVE is introduced in [18]. 

Substituting the 0-order Takagi-Sugeno fuzzy model of the FQ-learning with the 
FIVE FRI turns the FQ-learning to FRIQ-learning [22]. 

The FIVE FRI based fuzzy model in case of singleton rule consequents [10] can 
be expressed by the following formula: 
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where the fuzzy rules Rk have the form: 

If x1 = Ak,1  And  x2 = Ak,2 And … And  xm = Ak, m  Then  y = ck , (7) 
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and s
iX  is the ith scaling function of the m dimensional antecedent universe, x is 

the m dimensional crisp observation and ak are the cores of the m dimensional 
fuzzy rule antecedents A

k
. 

The application of the FIVE FRI method with singleton rule consequents (6) to be 
the model of the state-action-value function results in the following: 
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where ( )as,Q~  is the approximated state-action-value function. 

The partial derivative of the model consequent ( )as,Q~  with respect to the fuzzy 
rule consequents qu,i, required for the applied fuzzy Q-learning method (5) in case 
of the FIVE FRI model from (9) can be expressed by the formula  above 
(according to [14]): 
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where qu,i  is the constant rule consequent of the kth fuzzy rule, ks,δ  is the scaled 

distance in the vague environment of the observation, and the kth fuzzy rule 
antecedent, λ is a parameter of Shepard interpolation (in case of the stable 
multidimensional extension of the Shepard interpolation it equals to the number of 
antecedents according to [20]), x is the actual observation, r is the number of the 
rules. 
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Replacing the partial derivative of the conclusion of the 0-order Takagi-Sugeno 
fuzzy inference (5) with the partial derivative of the conclusion of FIVE (10) with 
respect to the fuzzy rule consequents qu,i leads to the following equation for the Q-
Learning action-value-function iteration:  
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where 1
...21

+k
uiiq

Ni
 is the k+1 iteration of the singleton conclusion of the uiii N...21

th 

fuzzy rule taking action Au in state Si, Sj is the new observed state, gi,u,j is the 

observed reward completing the ji SS →  state-transition, γ  is the discount 
factor and [ ]0,1∈k

ui,α  is the step size parameter.  

As in the previous chapter the 1~ +k
vj,Q  and k

ui,Q~  action-values can be approximated 

by equation (11). This way the FIVE FRI model is used for the approximation of 
the mentioned action-value function. 

In multidimensional cases to slightly reduce the computational needs it is a good 
practice to omit updates on rules which have a distance ( rd ) considered far away 
from the actual observation (for example a predefined limit dε : drd ε> ) in the 
state-action space. 

4 Reducing Rule Base Size by Incremental Creation 

For achieving the reduction of the fuzzy rule base size an incremental rule base 
creation is suggested. This method simply increases the number of the fuzzy rules 
by inserting new rules in the required positions (for an example see Figure 3.). 
Instead of building up a full rule base with the conclusions of the rules (q values) 
set to a default value, initially only a minimal sized rule base is created with 12 +N  
fuzzy rules at the corners of the 1+N  dimensional antecedent (state-action space) 
hypercube. Similarly like creating Ruspini partitions with two triangular shaped 
fuzzy sets in all the antecedent universes (see Figure 3/a). In cases when the 
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action-value function update (11) is high (e.g. greater than a preset limit 
Qε : 

QQ ε>Δ
~ ), and even the closest existing rule to the actual state is farther than a 

preset limit sε , then a new rule is inserted to the closest possible rule position (see 
Figure 3/a). The possible rule positions are gained by inserting a new state among 
the existing ones ( kk ss =+1 , ik >∀ , 

2
2

1
+

+
+

= ii
i

sss , see e.g. on Figure 3/b.). In case if 

the update value is relatively low (
QQ ε≤Δ

~ ), or the actual state-action point is in 

the vicinity of the already existing fuzzy rule, than the rule base remains 
unchanged. The next step is the value update done regarding to the FRIQ-
Learning method according to the equation (11), as it was discussed earlier.  
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A new fuzzy rule is inserted at 
1+is . 
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Figure 3/c 

Next approximation, with a new rule inserted, and value updated according to (11) 

This way the resulting action-value function will be modeled by a sparse rule base 
which contains only the fuzzy rules which seem to be most relevant in the model. 
Applying the FIVE FRI method, as stated earlier, allows the usage of sparse rule 
bases which could result in saving a considerable amount of computational 
resources and reduced state space. 

Conclusions 

By introducing the adaptation of the FIVE FRI method in Q-learning, continuous 
spaces can be applied instead of the originally discrete state-action spaces. Having 
continuous spaces can lead to better resolutions providing more precise 
description of the state-action pairs in Q-learning. The targeted reduced rule base 
size is achieved by incremental creation of an intentionally sparse fuzzy rule base. 
The fuzzy rule base is incrementally built up from a scratch and will contain only 
the rules which seem to be most relevant in the model. This way the real 
advantages of the proposed FIVE based FRIQ-learning method could be 
exploited: reducing the size of the fuzzy rule base has the benefits not only in 
decreasing the computing resource requirements, but having less rules 
(optimizable parameters), it also speeds up the convergence of the FRIQ-learning. 
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