
Magyar Kutatók 10. Nemzetközi Szimpóziuma
10th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 513

ICE Extension of RT-Middleware Framework

Zoltán Krizsán
University of Miskolc, Hungary
krizsan@iit.uni-miskolc.hu

Abstract: There is a promising middleware framework for robot systems called
RT-Middleware (and its open source implementation named OpenRTM-aist). A
rising demand exists for extending the existing OpenRTM-aist middleware with
the fast communication capability of ICE overcoming the communication speed
issues of the original version. With the help of ICE extension the communication
among components has been direct and fast, on the other hand, the
modularization, and creation of systems stay simple and easy. Another important
improvementof the suggested extension is the embadded possibility for creating a
connection among one consumer to multiple providers. The installation of ICE
extension is a simple file copy operation, so the base system can still work futher
with no changes in the original configuration. Upgrading the existing components
to the the suggested new extension is simple by replacing the CorbaPort type to
IcePort. The main contribution of the paper is the detailed introduction of the
suggested changes for the OpenRTM-aist middleware. The paper also discuss the
concept of this extension.

Keywords: robotics, middleware, distributed systems, object oriented programming,
OpenRTM-aist

1 Introduction

The development of robot systems uses different robot parts (sensors, processing
elements, actuators, data trasformer) which are combined with each other in a
compact, self contained system. The quick and easy development, the system
reconfigurability (at runtime, without recompiling) and the flexibility demand the
introduction of middleware frameworks for robot systems. One promising
middleware framework is the RT-Middleware technology (and its open source
implementation named OpenRTM-aist). For solving the speed issues of the
original system, a new Internet Communication Engine (ICE) approach was

Z. Krizsán
ICE Extension of RT-Middleware Framework

 514

introduced. Using ICE for Remote Method Invocation (RMI) in robot systems is
more efficient than other currently applyied RMIs. There was a rising demand for
extending the existing OpenRTM-aist middleware with the fast communication
capability of ICE. Building robot systems contain more parts, is frequent process
in the researcher life and the industrial area too. The environment of these systems
can change often and the requirements are also changeable, so the need for a
rebuilding and reconfiguration tool is essential. A common protocol and the
modularized concept are key issues solving this problem. The middleware
technology was introduced for this express purpose. There is a robot middleware
standard which can be found among Object Management Group (OMG).

1.1 The RT-Middleware Technology

The specification of RT-Middleware is defined in “Robotic Technology
Component 1.0” and “Super Distributed Object 1.1” which can be found in [1].
These specifications describe the concept of the structure of modularized robot
system and the system behavior. In the RT-Middleware, the software modularized
into components of RT functional element is called RT-Component (RTC). Each
RT-Component has the interface called Port, to communicate with other
components or exchange data. The RT system is constructed by connecting the
ports of multiple components as an aggregation of each RT-Component function.
The OpenRTM-aist is an open source implementation (it can be downloaded from
[3]) of the RT-Middleware specification based on Corba technology. It is
developed by National Institute of Advanced Industrial Science and Technology -
Intelligent Systems Research Institute - Task Intelligence Research Group.

1.2 The ICE Technology

The ICE Framework is an object oriented distribution platform that could run on
several different operating systems and implementation languages. It represents a
new approach to middleware that builds on Corba’s strengths while avoiding its
weakness. The Corba was introduced in the early nineties which fulfill the
requirements of that ages. Nowadays the Corba is out of date, it has got many
limitations, and can be difficult to learn and complex to use.

The most important part of ICE is the upgraded object model. Using a remote
object does not require additional service such as naming or bootstrap service. It
uses Proxies which are handles the remote object in transparent way. As a result,
applications require less code and the finished system has fewer dependencies on
external services that might fail.

Magyar Kutatók 10. Nemzetközi Szimpóziuma
10th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 515

ICE provides not only interface inheritance but also interface aggregation. A client
can demand an interface from a server. If the object supports the requested
interface, the ICE runtime creates a new proxy for that. The interface aggregation
solves the problem of versioning, because the developers can add newer interfaces
to the existing objects without violating the client-server contract.

ICE uses new specification language for describing the remote object interface,
which is clear, simple and efficient. This uses minimal number of built-in
primitive types, and it allows the usage of user-defined types and it has built-in
dictionary which is a key-value pair storage structure.

The ICE is inherently multithreaded. On the server side, a thread pool using a
leader-followed model dispatches incoming invocations. The clients also use
thread pool for invocation. The system runtime itself is fully thread-safe and gives
numerous items for developing multithreaded application.

The ICE protocol can run over whatever streams and datagram transports.
Currently, ICE supports TCP/IP and ssl as stream transport, and UDP as datagram
transport. The protocol engine is extensible, so developers can add new transport.

2 The RT-Middleware in Details

The advantage of OpenRTM-aist is the easy and user friendly way to use robot
parts. There are two groups of users:

• Component developers: They know the programming languages and
want to develop components in an easy way.

• End users (researcher): They would like to use only the system (prebuilt
components) - without any programming knowledge – via a user friendly
interface.

The middleware also contains a graphical editor, named RTC Builder, for
component creation. After the component definition is created (stored in xml file)
the system generates the appropriate source files. The work of developer is just
filling the body of generated source code. A lots of applications have made using
this system (f.e.: [4],[5]) which proves the easy and user friendly application.

After the new robot system is ready and the components running in different
places, they can be explored by a graphical application called RTC system editor.
The user can make a new system which is built from components and can activate
it. The user can change the configuration by rtc.conf file before starting the
components or real time via the graphical application. After the user closes the
manager application the new system will run over.

Building blocks of the system are RT components (Robot) running separately
which has well defined architecture. The acrhitecture and interfaces are shown in

Z. Krizsán
ICE Extension of RT-Middleware Framework

 516

Figure 1. Their connections (communications) are possible only via ports. The
components can send/receive data to/from each other via dataport. The
components live, work and die. It has more states that are controlled by the system
and the user.

Figure 1

The architecture of RT Component.

It can have more ports: input ports and output ports (input: „get something„ from
the other, output: “give something” to the other).

Two kinds of ports are exist:
• Data port: buffered stream, generally it has got a type.

o Inport: This is the input port that handles the data received from
other components. As the core logic will process data received
by the InPorts sequentially, InPort is particularly well suited to
periodic components.

o Outport: This is the output port that will stream the processed
data to other components. It supports both the pull mode, in
which the receiver acquires the data by itself, and the push
mode, in which the data is actively sent receivers that
subscribed.

• Service port: This implements the Remote Method Invocation. The
provider exposes its functionalities and data as remote object. The
consumer can use the remote functionalities as local ones. The RTM
system is based on CORBA middleware and it support CORBA service
port. The provider implements (a servant object) the idl interface(s)
(interface definition language).

Magyar Kutatók 10. Nemzetközi Szimpóziuma
10th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 517

2 The Suggested ICE Port Extension

The main goal of the suggested extension is to add fast ICE communication
possibility to the components in form of IcePort. The new extension is
implemented in dynamic library (dll on Windows, so in linux), so the installation
is a simple file copy operation, and does not modify the base system
functionalities just improves it. Tha main concept is: replacing the corba port class
with the new IcePort, after the user makes the connections and ativates the
components, the remote method invocation is made directly among the compoents
without any Corba involvment. The parts of new improved system and their task
are shown in the Figure 2.

Figure 2

The main concept of ICE extension.

One component can have one or more Ice port(s), which is(are) service port(s).
From this time forth there are two kind of service port: CorbaPort and IcePort. The
IcePort can provide or consume one or more services (Ice interfaces). The slice
language describes the functionalities of these interfaces, and the servant class
implements that interface. If an ICE port acts as a provider it opens one TCP port
for one ICE object adapter, so if the module has more IcePorts it opens more TCP
ports too. If an Ice Port is a provider its name must be unique. If a component
exists with such name the system throws an exception and the component will not
be created.

The accustomed configuration file (rtc.conf) can contain definition for ice port
number which can define the system port number for every IcePort in the
following form:

ice_port.iceportname: number

Z. Krizsán
ICE Extension of RT-Middleware Framework

 518

If it does not contain the specified ice port number then it is assigned and
increased automatically. If there is no definition for IcePort then the first ice port
will be 20000 the second will be 20001, …The name of created ICE endpoint will
be the name of IcePort. If the port is already in use (e.g. an other application uses
the automatically assigned or required system port) then an exception is thrown
and the component does not created.

Oct 16 17:15:05 ERROR: : the port 12382 is already used, please change or add
"ice_port.server1:xxxx" entry with a free port number!!!

The IcePort supports the 1:N and N:1 connections. One consumer can use more
providers and more consumers can use one provider. In case of one consumer uses
more providers the developer can get the count of providers, and the method
invocation is possible for all remote objects. The ice adapter will be activated after
the port gets connected to other(s).

Because the original RTC system editor does not handle the IcePort, we had to
write a new one. The new editor written in C++ and using WxWidget, which
garantees the fast run and small size.

3 An Application Example: VIRCA

The Virtual Collaborating Arena (VIRCA) is making a virtual laboratory that
gives a way to the team of researchers or industrial engineers to collaborate with
each other control a physical device remotely in easy, reality environment. This
system was developed in Cognitive Informatics Group of MTA SZTAKI research
institute, more information about it can be found under [6]. In such case when the
industrial robot working in dangerous environment the user personally
presentation is expensive and unnecessary risk. In this case the controlling the
device with a method, which is close to real manner is a good solution too. So the
VIRCA connects research groups and distant laboratories (devices) over the
Internet using standard protocols. The main idea of VIRCA is placing the physical
device in a generated virtual space , as you can see in Figure 3.

All places connect to a name server to register their device list. When the
components are up and registered on the network, the operators can choose their
input and output devices (cognitive informatics equipment and robots) and use
them to solve the given task.

The main goal is to develop a system which is possible to visualize physical
devices, connect to them and control them, make a connection and establish
interaction among real and virtual objects. Secondary goal is enable more virtual
space to connect with each other.

Magyar Kutatók 10. Nemzetközi Szimpóziuma
10th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 519

Figure 3

The concept of VIRCA system.

In this system the following mandatory components are needed:

• 3D Space: One 3D visualisation component which continuously renders
the virtual word. The devices can register into that virtual space and then
it the mesh (model of physical device) is appearing the appropriate
position. The virtual object “feel” the outer object presentation (e.g.
virtual ball acts in harmony with the physical one). The user can send a
command to a physical device via graphical (3D) interface.
The 3D Space component has two interfaces:

o Register interface (provider): The physical (cyber) devices can
register/unregister themselves into the virtual world, or send
their new positions.

o Commander interface (consumer): Sends commands to the
robot: e.g. move to another position or take something or do a
job, etc.

• Cyber devices: Several different physical robot devices can exist at the
same time in different places. Each type of robot has its own component
which can exist several instances in the same time. In the first step we
support two devices: Lego NXT robot and KUKA industrial robot.
The cyber device component has two interface:

Z. Krizsán
ICE Extension of RT-Middleware Framework

 520

o Commander interface (provider): Gets commands from 3D
components or any other component, which want to control
them.

o Register interface (consumer): registers into / unregisters from
virtual space.

The optional components can be the followings:

• Camera component: provides pictures or movie about a physical space.

• Observer component: gets the picture, which is provided by camera
component, identifies the objects and sends its position to 3D engine

• Controller components: variety of form can be existing. The user sends
command to the cyber device via this component by his voice or arm or
gestures. The input of these components can be provided by camera or
microphone or any other cognitive source.

If the system uses more cyber devices then the Commander interface of 3D system
consumes more Commander interface of more cyber devices, so the imporved
system needed.

Conclusions

The OpenRTM system with the ICE extension is an efficient solution for building
distributed robot systems containing more parts running on heterogenic platforms.
The suggested improvement provides a fast negotiation among components and
supports the connection among more providers and one cunsumer in a transparent
way. The first step of building a system is design of the components and their
interfaces. If the parts of the new robot system communicates via well defined
interfaces, it can be extended further in a rather easy way.

Acknowledgement

The research was supported by NAP project NKTH-KCKHA005 (OMFB-
01137/2008).

References

[1] http://www.omg.org/robotics/

[2] A New Approach to Object-Oriented Middleware, IEEE Computer Society
2004

[3] http://www.openrtm.org/

[4] Gabor Sziebig: Sziebig Gábor, Gaudia Andor, Korondi Péter, Ando
Noriaki, Solvang Bjørn, Robot Vision for RT-Middleware Framework, In
Proc. IEEE Instrumentation and Measurement Technology Conference
(IMTC'07), pp. 1-6, 2007

Magyar Kutatók 10. Nemzetközi Szimpóziuma
10th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 521

[5] Gábor Sziebig: Sziebig Gábor, Gaudia Andor, Korondi Péter, Ando
Noriaki, Video image processing system for RT-middleware, In Proc. 7th
International Symposium of Hungarian Researchers on Computational
Intelligence (HUCI'06), pp. 461-472, 2006

[6] http://www.sztaki.hu/department/Cogvis/

