
Magyar Kutatók 10. Nemzetközi Szimpóziuma
10th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 365

Property Analysis of Visual Behavior Models to
Code Transformation

Tamás Mészáros, Gergely Mezei
Budapest University of Technology and Economics, Hungary
mesztam@aut.bme.hu, gmezei@aut.bme.hu

Abstract: Nowadays, when visual modeling is becoming more and more popular, it is still
an open issue how to model the runtime behavior (animation) of visual languages. We are
currently working on a complete solution to this issue, we have specified visual languages
that can describe the behavior of arbitrary metamodeled visual language and we have also
provided a graph-rewriting-based transformation which processes these 'animation' models
and generates executable source code. This paper shortly introduces previous work, and
focuses on the analysis of the runtime properties of the transformation. We performed
termination analysis on the transformation, and examined the runtime requirements of the
algorithm, based on the size of the input models. We have also verified that the
transformation processes topologically correct models only. We present generic techniques
which are applicable not only in connection with this concrete case, but with arbitrary
other graph-rewriting based model transformations.

Keywords: metamodeling, animation, termination, runtime complexity

1 Introduction
In recent years, domain-Specific Modeling (DSM) has gained increased popularity
in software modeling. Domain-Specific Modeling Languages (DSMLs) can
simplify the design and the implementation of systems in various domains.
Domain-specific visualization helps to understand the models for domain
specialists not familiar with programming. A popular way to define DSMLs is
metamodeling. Metamodels define a vocabulary of model elements for a specific
language by describing the available model elements, their properties and the
relations between the elements. This definition is often referred to as the abstract
syntax of the language. However, metamodeling is not meant to describe the
visual representation, namely the concrete syntax, or the dynamic behavior
(animation) of modeling items. Based on the metamodel, a default concrete syntax
can be generated automatically, but the description of customized visualization –
including colors, sizes and layouting - usually needs additional modeling
techniques.

T. Mészáros et al.
Property Analysis of Visual Behavior Models to Code Transformation

 366

In [1], we have presented an integrated solution to describe the dynamic behavior
of the models in a generic and visual way. In our approach, we separate the model
and its animation logic, and provide visual languages to define the animation of
the model elements or their visualization. The integration of the models is
performed by both references between models of different domains and by the
model processors. The integration of external components or frameworks into our
environment is supported by a visual language and a code generator, thus the
animation logic can handle all components in a uniform way.

To be able to execute the visual behavior models with high performance - instead
of the runtime interpretation of the models - we generate executable source code
from them and compile the source code into reusable dynamic linked libraries. We
perform the code generation with graph rewriting-based [2] model transformation.
The transformation itself is published in depth in [3]. This paper presents the
animation framework and the transformation in a nutshell and evaluates important
properties of the transformation in detail. The presented analysis techniques are
not specific to this specific case, but are generally applicable in connection with
any other transformations as well.

2 Background
Visual Modeling and Transformation System (VMTS) [4] is a general purpose
metamodeling environment supporting n-level metamodeling. N-level means in
this context that the instance models can be used as metamodels: they can be used
to define model hierarchies such as meta class diagram - class diagram - object
diagram. The maximum depth of these hierarchies is not limited; in VMTS, we
can construct an n-level modeling chain. VMTS uses a proprietary modeling
space. Models in VMTS are represented as directed, attributed graphs. In our
approach, edges are attributed as well.

2.1 VMTS Animation Framework (VAF)
The VMTS Animation Framework (VAF) [1] is a flexible framework supporting
the real-time animation of models both in their visualized and modeled properties.
VAF separates the animation of the visualization from the dynamic behavior
(animation) of the model. For instance, the dynamic behavior of a graphically
simulated statechart is really different from that of a simulated continuous control
system model. In our approach, the domain knowledge can be considered as a
black-box whose integration is supported with visual modeling techniques. Using
this approach, we can integrate various simulation frameworks or self-written
components with event-driven communication. The animation framework
provides three visual languages to describe the dynamic behavior of a
metamodeled model and their processing via an event-driven concept. The key

Magyar Kutatók 10. Nemzetközi Szimpóziuma
10th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 367

elements in our approach are the events. Events are parameterizable messages that
connect the components in our environment. The services of the presentation
framework, the domain-specific extensions, and possible external simulation
engines are wrapped with event handlers, which provide an event-based interface.
Communication with event handlers can be established using events. The
definition of event handlers is supported by a visual language. The visual language
defines the event handler and the possible events. The default implementation of
an event handler can be generated based on the interface of the wrapped objects
[5]. The animation logic can be described using an event-driven hierarchical state
machine, called Animator. We have designed another visual language to define
these state machines. The state machine consumes and produces events. The
transitions of the state machine are guarded by conditions testing the input events
and fire other events after performing the transition. The input (output) events of
the state machine are created in (sent to) another state machine or an event
handler. The events produced by the event handlers and the state machines are
scheduled and processed by a DEVS [6] based simulator engine. The event
handlers and the state machines can be connected in a high-level model. The
communication between components is established through ports. Ports can be
considered labeled buffers. Note that both the high- and low-level languages are
defined by the same metamodel, however, based on their application they can be
considered as two different languages.

2.2 Processing Visual Behavior Models
The behaviour models are transformed into executable source code, more
precisely, into the model of the code, then the source code is compiled and
executed using a DEVS-based simulation framework. We employ a C# DOM
similar to the Microsoft CodeDOM [7] to model source code. The control flow
model of the transformation which processes the animation models is depicted in
Figure 1. The sequence can be departed into three well-separated parts. Part (1)
verifies the input models, if they are topologically correct (detailed in Section 2).

Figure 1

Transformation control flow model

T. Mészáros et al.
Property Analysis of Visual Behavior Models to Code Transformation

 368

The transformation processes those models only, the states of that are reachable
from the start state. Part (2) creates the individual animation classes for each
Animator element and their contained state machine, while part (3) creates the
configuration class, which ties animators and event handlers together.

3 Input Model Verification
We have extended the original transformation presented in [3] with three
additional rules (Figure 1, Figure 2) used to verify the input models as a first step.
The transformation verifies the reachability of the state machine states. Actually,
we do not verify the validity of the required event sequences to reach a state, but
only the topological structure of the input model is analyzed. If a specific state is
topologically unreachable, it indicates a design flaw. This is not a domain-specific
problem, but applies to each simulation.

Proposition 1 The transformation processes topologically correct state machines
only (in sense of each state of the input model should be reachable from the start
node).

Proof:
Figure 2 depicts the rules which are used to detect unreachable states in the input
models. The GenerateTC (Generate Transitive Closure) rule matches either a
StartState or an already processed (indicated by a flag on the element) element for
the stateFrom node. It also selects a still not processed edge for the Transition
edge and a not processed node for the stateTo node. After a successful match, it
sets the Processed flag of the transition edge and the stateTo node to true. The
rule is executed exhaustively, thus, when it finishes, there is not a state (stateTo)
in the input model, that has a processed neighbor with incoming edge. This is
possible, if (i) each state is in processed state (meaning, that each state is
reachable), or (ii) there is not an incoming edge from the processed (reachable)
states into any of the unprocessed ones. The unprocessed states are not reachable
from the start node, so if the CheckDeadState rule can mach such a node, then the
input model is invalid, and the transformation exists. Otherwise each state is
reachable from the start, and the transformation proceeds. □
Finally the ResetTransitionTag rule matches each transition, and resets the
Processed flag of the transition and the two connected States to false for later use.

 a) GenerateTC b) CheckDeadState c) ResetTransitionTag

Figure 2
Rules detecting unreachable states

Magyar Kutatók 10. Nemzetközi Szimpóziuma
10th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 369

4 Termination Analysis
We use the definitions and theorems presented in [8] to make the proving method
simpler. These theorems are proven to injective matches only, but this is not a
problem, because the presented transformation uses injective matches only.

Definition 1 An E-concurrent production p* is an E-based composition if there is
at least one input graph with an E-related transformation .

Definition 2 Consider a possibly infinite sequence of graph productions pi ,
(i=1,2,…) and a sequence of E-dependency relations (Ei, , ei+1) leading to a
sequence of their E-based compositions (with and

A cumulative LHS series of this sequence is the graph series consisting of the
left hand side graphs of . Moreover, a cumulative size of series of a production
sequence is the nonnegative integer series .

Theorem 1 A GTS=(P) terminates if for all infinite cumulative LHS sequences

() of the graph productions created from the members of P, it holds that

Note that we assume finite input graphs and injective matches.

Proposition: The transformation depicted in Figure 1 terminates on arbitrary
finite input model.

Proof: Except for the ProcessTransitions and the PopEvents rule-pair, there are
no loops in the cycle, after finishing the execution of a rule there is not a control
sequence which would contain the same rule again. Therefore, we can examine the
termination of the remaining rules separately.

As the CO_Skeleton and CheckDeadState rules are executed only once, they do
not influence the termination of the transformation.

The key of the proving method is to show, that the merging of the consecutive rule
executions results in an LHS sequence that exceeds all limits. In case of the
GenerateSkeleton rule, the processing of an Animator is denoted by creating an
attribute reference between the Animator (animator node) and the newly created
namespace declaration (ns node). The existence of such a reference and the
connecting namespace is assigned as a negative application condition to this rule.
As the GenerateSkeleton rule does not create or delete another attribute reference
or nodes of type Namespace, the merging of two consecutive executions of this
rule results in an LHS graph, that contains two different Animator nodes (the
negative application condition denies to match the same Animator twice) (Fig. 3a).
By the combination of each additional rule execution, the LHS graph will grow by
another Animator node. Therefore, (based on Theorem 1), the rule terminates, and

T. Mészáros et al.
Property Analysis of Visual Behavior Models to Code Transformation

 370

a Namespace node is created for each and every Animator node. The termination
analysis of the GenerateTC, ResetTransitionTag, Method_Buildup and
Method_PopEvents rules follows the same principle.

The termination of the GenerateClass rule can be proven on a similar basis. In this
case the processing of a Namespace node is denoted by setting the IsProcessed
flag to true on the node. The existence of this flag is assigned again to the rule as a
negative application condition. Figure 3 b) depicts the combination of two
consecutive GenerateClass rule executions. The same Namespace cannot be
matched twice by two different executions of the same rule, thus, the LHS graph
will grow by a Namespace and an Animator node (a unique Namespace node is
created and assigned to each Animator node). Consequently the GenerateClass
rule terminates as well. The termination analysis of the Traverse, PropertyPorts,
TopLevelStates, SubLevelStates, CO_InitAnim, InitEH and EventRoutes rules
follows the same principle.

Recall that, the ProcessTransitions and the exhaustive PopEvents rules are
executed in a cycle. The termination of the PopEvents exhaustive rule can be
proved using the presented methods independently from the processed transition;
therefore, we have to prove only that the ProcessTransition rule can be executed
for a finite number of times. As the ProcessTransitions rule does not match any
elements created or modified by PopEvents, it can be examined as if it would be
executed in the loop alone. This way we simplify the execution to the exhaustive
way, where the termination is ensured by the application of an IsProcessed flag
again. □

IsProcessed == false

IsProcessed = true

IsProcessed = true IsProcessed == false IsProcessed = true

IsProcessed = true

IsProcessed == false

IsProcessed == false
a) Merging of rules with exclusive attribute constraints

NamespaceAnimator NamespaceAnimator

NAC

NamespaceAnimator NamespaceAnimator

NAC

NamespaceAnimator NamespaceAnimator

NAC

NamespaceAnimator NamespaceAnimator

NAC

b) Merging of rules with exclusive reference constraints

Figure 3
E-concurrent production of consecutive executions of the same rule

Magyar Kutatók 10. Nemzetközi Szimpóziuma
10th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 371

4 Complexity Analysis of the Transformation
In this section, we analyze the algorithmic complexity of the transformation. As
the rewriting phase of a rule requires constant time, we examine only the time
required by the matching phase of the rules.

The transformation engine generates an execution plan [9] for each rule based on
the LHS patterns. The execution plan defines exactly how the matcher traverse the
host graph and in which order it matches the elements of the LHS graph. The
matching order highly influences the complexity of the matcher. In this chapter,
we perform complexity analysis based on the generated execution plan.

Definition 1 Let nT mean the number of nodes of type T found in the input model.

Definition 2 Let eT mean the number of edges of type T found in the input model.

Definition 3 Let mean the maximum number of incoming edges of type E in
node of type T

Definition 4 Let mean the maximum number of outgoing edges of type E in
node of type T

Note: It is evident, that and

In Figure 4, we present the notation, that describes the execution plan of a rule in a

visual way. Figure 4 a) illustrates the case when the matching starts at the edge e,
the nodes a and b are matched, then the edge f and finally the node c. As an edge
exactly defines its endpoints, their matching cost can be considered constant. The

matching of the two edges can be performed in . (In the worst case,
we have to check every E-typed e edges, and every f edges outgoing from every
possible b.) Figure 4b) illustrates the case, when the matching starts at the node a,
then continues through e to b, then through f to c. The complexity of this
execution plan is O(nA*nE*nF).

In the following we analyze each rewriting rule of the transformation, and
evaluate their complexity separately and then aggregate the results.

B
Fout

B
FoutA

Eout

a) matching starts at an edge b) the matching starts at a node

Figure 4
Execution plans

T. Mészáros et al.
Property Analysis of Visual Behavior Models to Code Transformation

 372

GenerateSkeleton:

The rule matches animator nodes in an exhaustive way. The matching of a single
Animator node can be performed in O(nAnimator) time. The rule is executed once for
each Animator, since new Animators are not created, the execution of the rule
requires O(nAnimator

2) time. Ideally, iterating through a set of nodes can be
performed in O(n). However, the applied transformation engine does not support
the execution of a rule for each elements of a type, we can achieve the same
functionality by executing the rule in the exhaustive way and marking already
processed elements.

GenerateClass:

The rule matches an Animator and a Namespace node in an exhaustive way. The
rule also prescribes an attribute reference from the Animator node towards the
Namespace. As this reference is not part of the metamodel (it is used only during
the transformation), we cannot navigate along it, and the existence of it can be
verified only after matching the two nodes. Therefore, one matching can be
performed in O(nAnimator*nNamespace) time (Figure 5). The rule is executed once for
each Animator, and as nAnimator=nNamespace (one Namespace is created for each
Animator, and there are no Namespaces in the output model by default), the total
execution time is O(nAnimator

3).

Figure 5

Execution plan for GenerateClass

PropertyPorts

Figure 6 illustrates the execution plan for the PropertyPorts rule.

Note, that there is exactly one g edge of type TypeMemberContainment incoming
into method_init, thus it (and class_anim) can be matched in constant time. One
match can be found in O(nAnimatorPortContainment*nStatementCollectionContainer), the rule is
executed once for each AnimatorPort. As nAnimatorPort=nAnimatorPortContainment and
nStatementCollectionContainer=nAnimator (three methods, three StatementCollection-
Containers are created for each animator, and the output model did not contain
such an element by default) the complexity of the rule is O(nAnimatorPort

2*nAnimator).

Figure 6

Execution plan for PropertyPorts

Magyar Kutatók 10. Nemzetközi Szimpóziuma
10th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 373

MethodBuildup

Figure 7 illustrates the execution plan of MethodBuildup. Similarly to the case of
GenerateClass, the connection between the two nodes can be discovered only
after matching both of them, thus the execution time is O(nAnimator*nTypeDeclaration),
this simplifies to O(nAnimator

2) as nAnimator=nTypeDeclaration.

Figure 7

Execution plan for MethodBuildup

TopLevelStates, SubLevelStates, ProcessTransitions

The matched patters of the TopLevelStates, SubLevelStates and
ProcessTransitions rules (Figure 8) are similar to that of the PropertyPorts rule.
However, because of the different element types, the execution order has been
slightly changed.

One match can be found in O(nAnimatorsStateContainment*nStatementCollectionContainer) time in
the top-level case, O(nStateStateContainment*nStatementCollectionContainer) in the sub-level case
and O(nTransition*nStatementCollectionContainer) in case of the ProcessTarnsitions rule. The
TopLevelStates and SubLevelStates rules are executed once for each top-level state
(nAnimatorStateContainment) respectively once for each sub-level state (nStateStateContainment)
(ProcessTransitions is executed once). As O(nStatementCollectionContainer)=O(nAnimator),

a)

b)

c)
Figure 8

Execution plans for a) TopLevelStates b) SubLevelStates and c) ProcessTransitions

T. Mészáros et al.
Property Analysis of Visual Behavior Models to Code Transformation

 374

the aggregated execution times are O(nAnimatorStateContainment
2*nAnimator),

O(nStateStateContainment
2*nAnimator) and O(nTransition*nAnimator).

PopEvents

The PopEvents rule (Figure 9) receives the transition and the class_anim element
as a parameter, thus they can be matched in O(1).

Figure 9

Execution plan of the PopEvents rule

The rule is executed once for each AnimatorPortContianment (Port), the overall
execution time is thus O(nAnimatorPortContainment

2*nStatementCollection).

The loop consisting of ProcessTransitions and PopEvents is executed for each
transition, the execution time of the complete loop is
O(nTransition

2*nAnimator
2*nAnimatorPort

2) (nStatementCollectionContainer = nStatementCollection and
nAnimatorPortContainment=nAnimatorPort and nStatementCollection=nAnimator).

CO_Skeleton

The rule does not match a node, but creates new elements only. It is executed
once, thus it requires O(1) time.

CO_InitAnim, CO_InitEH

 a) CO_InitAnim b) CO_InitEH

Figure 10
Execution plans for CO_InitAnim and CO_InitEH

The two rules receive the class_config and the init_statements elements as
parameters from the CO_Skeleton rule, thus, their matching can be performed in
O(1) (Figure 10). The remaining nodes can be matched in O(nAnimator) and
O(nEventHandler). They are executed once for each Animator respectively for each
EventHandler, thus the aggregated execution times are O(nAnimator

2) and
O(nEventHandler

2).

Magyar Kutatók 10. Nemzetközi Szimpóziuma
10th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics

 375

CO_EventRoutes

The initStatements node is passed as a parameter to the CO_EventRoutes rule,
therefore, it has a constant match time. The container edges and nodes for port1
and port2 can also be matched in constant time, as there exists exactly one
container (either Animator or EventHandler for each port). Thus, the complexity
of the rule is O(nEventRoute).

Figure 11

Execution plan for CO_EventRoutes

GenerateTC, ResetTransition

The execution plan of the GenerateTC and ResetTransition rules is depicted in
Figure 12. Both rules are executed once for each transition, thus their execution
time is O(nTransition

2).

Figure 12

Execution plan for the GenerateTC and ResetTransition rules

CheckDeadState

The rule tries to match a single State (which was not processed by GenerateTC),
and is executed once, therefore it finishes in O(nAnimState).

Aggregated complexity of the transformation

To be able to summarize the runtime requirements, we have to note that
nAnimatorPort ≥ nAnimator (each animator contains at least one port to be able to
communicate with the environment). Furthermore,
O(nTransition) ≥ O(nAnimatorStateContainment) and O(nTransition) ≥O(nStateStateContainment),
because nTransition ≥ ½ nAnimState (an input state machine consist of connected graph
components nested hierarchically and each component contains at least one
transition, thus in each component nTransition ≥ ½ nAnimState, which is the case of two
states and one transition). So the runtime requirements with the highest exponents
are: O(nTransition

2*nAnimator
2*nAnimatorPort

2), O(nEventHandler
2) and O(nEventRoute). In a

typical case, the state machine is much larger, than the high level connecting
model with the Animators and EventHandlers, therefore, the most significant
component is the only loop in the control flow graph with the complexity of
O(nTransition

2*nAnimator
2*nAnimatorPort

2).

T. Mészáros et al.
Property Analysis of Visual Behavior Models to Code Transformation

 376

Conclusions

In [3] we have presented the model transformation which converts visual behavior
models to source code. In this paper we have analyzed the runtime properties of
the transformation. We have shown that the transformation processes only those
models the states of which are topologically reachable. We have proven that the
transformation terminates regardless of the input model. We have also evaluated
the runtime complexity of the transformation. We have shown, that the
transformation can be executed in O(nTransition

2*nAnimator
2*nAnimatorPort

2). Although,
the presented results are specific to this concrete transformation, the applied
techniques can be used at the analysis of other graph-rewriting based
transformations as well.

Acknowledgement

This paper has been supported – in part – by the Mobile Innovation Center.

References

[1] T. Mészáros, G. Mezei, H. Charaf. Engineering the Dynamic Behavior of
Metamodeled Languages. Simulation, Special Issue on Multi-Paradigm
Modeling, 2009

[2] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer. Fundamentals of Algebraic
Graph Transformation. Springer, Berlin, illustrated edition, 2006

[3] T. Mészáros, T. Levendovszky, G. Mezei. Code Generation with the Model
Transformation of Visual Behavior Models. Proceedings of the 3rd
International Workshop on Multi-Paradigm Modeling. Denver, US. 2009

[4] VMTS Team. Visual Modeling and Transformation System Website 2009.
http://vmts.aut.bme.hu

[5] T. Levendovszky, T. Mészáros. Tooling the Dynamic Behavior Models of
Graphical DSLs. In In proceedings of the 13th International Conference on
Human-Computer Interaction. San Diego, USA, July 2009

[6] B. P. Zeigler, T. G. Kim, H. Praehofer. Theory of Modeling and
Simulation. Academic Press, Inc., Orlando, FL, USA, 2000

[7] Microsoft CodeDOM website:
http://msdn.microsoft.com/en-us/library/650ax5cx.aspx

[8] T. Levendovszky, U. Prange, H. Ehrig, Termination Criteria for DPO
Transformations with Injective Matches, ENTCS 175. Vol. 4, pp. 87-100,
2007

[9] Batz, G. V., Kroll, M., Geiß, R.: A First Experimental Evaluation of Search
Plan Driven Graph Pattern Matching, Proceedings of the 3rd Intl.
Workshop on Applications of Graph Transformation with Industrial
Relevance (AGTIVE '07), Springer, 2008

