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Abstract: The fuzzy flip-flop based multilayer perceptron, named Fuzzy Neural 
Network, FNN is proposed for function approximation. In recent years much effort 
has been made for the development of a special kind of bacterial memetic 
algorithm for optimization and training of the fuzzy neural network parameters. In 
this approach the FNN parameters have been encoded in a chromosome and 
participate in the bacterial mutation cycle. The quasi optimized FNN’s 
performance based on various fuzzy flip-flop types has been examined with a 
series of multidimensional input functions. 
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1 Introduction 

Artificial neural networks and fuzzy logic models can approximate any 
multivariate nonlinear function [9]. The aim of this paper is essentially to show 
how fuzzy models, neural networks, and bacterial algorithms can be usefully 
merged and deployed to solve in the first step parameter optimization and the 
function approximation problems. The combination of these three techniques tries 
to minimize their weakness and to profit their advantages. The main idea is using 
the property of learning from the data of the network using a parallel structure 
which can be implemented in hardware. 

In analogy with the binary flip-flops which are the basic units in every 
synchronous sequential digital circuit, the fuzzy flip-flops can be reckoned as the 
basic functional blocks for developing dynamical fuzzy systems. The fuzzy flip-
flops used as neurons are interlinking to form a complex fuzzy neural network. 
How these neurons are organized is itself a highly complex problem. For a given 
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problem the best network is selected from the network performance and 
complexity points of view. This study has been focused more or less on the neuro-
computations direction. A Fuzzy Flip-Flop Neural Network (FNN) as a novel 
implementation possibility of multilayer perceptron neural networks is 
investigated and its optimization and learning algorithm is proposed.  

The paper is organized as follows. After the Introduction, in Section 2 the 
behavior of fuzzy J-K and D flip-flops based on two parametrical fuzzy operations 
are given. The construction of a single input-single output neuron unit from 
arbitrary fuzzy J-K flip-flop where Q  is fed back to K and (the old) Q is fixed is 
proposed. In Section 3 the concept of the fuzzy flip-flop based multilayer 
perceptron, named Fuzzy Neural Network, FNN is introduced. The neuron 
element of FNN may be any F3 with more or less sigmoidal transfer 
characteristics. The FNN can approximate any multidimensional input functions. 
The Levenberg-Marquardt method (LM) [12] and a special kind of bacterial 
memetic algorithm [13], the Bacterial Memetic Algorithm with Modified Operator 
Execution Order (BMAM) [4] is proposed for FNN parameter optimization and 
network training. The near optimal values of Q are given which are quasi 
independent from the input function complexity and FNN neuron number for a fix 
fuzzy operation parameter value. Finally, in Section 4 the quasi optimized FNN’s 
performance based on various fuzzy flip-flop types has been examined with a 
series of multidimensional input functions. 

2 Definitions and Properties of Several Fuzzy Flip-
Flops 

The concept of fuzzy flip-flop was introduced in the middle of 1980’s by Hirota 
(with his students) [6]. The Hirota Lab recognized the essential importance of the 
concept of a fuzzy extension of a sequential circuit and the notion of fuzzy 
memory. From this point of view they proposed alternatives for “fuzzifying” 
digital flip-flops. The starting elementary digital units were the binary J-K flip-
flops. Their definitive equation was used both in the minimal disjunctive and 
conjunctive forms. As fuzzy connectives do not satisfy all Boolean axioms, the 
fuzzy equivalents of these equations resulted in two non-equivalent definitions, 
“reset and set type” fuzzy flip-flops (F3), using the concepts of fuzzy negation, t-
norm, and s-norm operations. In [7] Hirota et al. recognized that the reset and set 
equations cannot be easily used as elements of memory module, because of their 
asymmetrical nature. In their 1988’s paper [13] Ozawa, Hirota and Kóczy 
proposed a unified form of the fuzzy J-K flip-flop characteristic equation, 
involving the reset and set characteristics, based on min-max and algebraic norms. 
A few years later, the hardware implementation of these fuzzy flip-flop circuits in 
discrete and continuous mode was presented by the Hirota Lab [14]. The fuzzy 
flip-flop was proposed as basic unit in fuzzy register circuit. 
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The fundamental equation of the binary J-K flip-flops is: 

( )( )( )( 1)+ = + + = + + +Q t JK JQ KQ J K J Q K Q     (1) 

The unified formula of the fuzzy J-K flip-flop was expressed as follows: 

( 1) ( ) ( ) ( )+ = ∨ ∧ ∨ ∧ ∨Q t J K J Q K Q      (2) 

The concept of a novel fuzzy D flip-flop type was defined in [10]. Connecting the 
inputs of the fuzzy J-K flip-flop in a particular way, namely, by applying an 
inverter in the connection of the input J to K, case of K = 1 - J, a fuzzy D flip-flop 
is obtained. Substituting =K J  in equation (2) and let D = J, the fundamental 
equation of fuzzy D flip-flop is 

( 1) ( ) ( ) ( )+ = ∨ ∧ ∨ ∧ ∨Q t D D D Q D Q      (3) 

In our previous papers [10], [11] the unified approach based on a set of eleven 
norms, namely standard, drastic, Łukasiewicz, Yager, Dombi, Hamacher, 
including algebraic, Frank, Dubois-Prade, Schweizer-Sklar and Fodor, combined 
with the standard negation, was analyzed in order to investigate, whether and to 
what degree they present more or less sigmoidal (s-shaped) ( 1)→ +J Q t  
characteristics in particular cases, when K = 1-Q (unified fuzzy J-K flip-flop with 
feedback), K = 1 - J (new fuzzy D flip-flop derived from the unified fuzzy J-K 
one) with fixed value of Q.  

Table 1 summarizes the transfer characteristics shape for every combination of 
unified J-K and D type F3s with all above mentioned fuzzy operation pairs, the 
parameters of the norms chosen for suitable values. The S notation refers to 
sigmoidal character, the NS to non-sigmoidal shape. 

 
TABLE 1 VARIOUS FUZZY FLIP-FLOPS CHARACTERISTICS 

Fuzzy operation J-K 
(unified; K=1-Q) 

D 
(K=1-J) 

Standard (min-max) NS NS 
Algebraic  NS NS 
Drastic  NS NS 
Łukasiewicz NS  S 
Yager  S S 
Dombi  S NS 
Hamacher  S S 
Frank  S S 
Dubois-Prade S S 
Schweizer-Sklar  NS NS 
Fodor NS NS 
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We have conducted extensive investigations by simulations and found that the 
( 1)→ +J Q t  transfer characteristics of fuzzy J-K flip-flops based on Yager, 

Dombi, Hamacher, Frank and Dubois-Prade norms, further the ( 1)→ +D Q t  
characteristics of (new) fuzzy D flip-flops of Łukasiewicz, Yager, Hamacher, 
Frank and Dubois-Prade operations show quasi sigmoidal curvature, while all 
other F3s investigated have non-sigmoidal behavior.  

The Yager and Dombi class of operations [16], [2] are given by the expressions: 

( ) ( ) ( )( )1/
, 1 min 1, 1 1

pp p
Yi x y x y⎛ ⎞= − − + −⎜ ⎟

⎝ ⎠
;    (4) 

( ) ( )( )1/
, min 1,

pp p
Yu x y x y= +  and 

( ) ( ) ( )( )11 1 1 1 1 1
/ pp p

Di x, y / / x / y⎛ ⎞= + − + −⎜ ⎟
⎝ ⎠

;    (5) 

( ) ( ) ( )( ) 1
1 1 1 1 1 1

/ pp p
Du x, y / / x / y

−− −⎛ ⎞= + − + −⎜ ⎟
⎝ ⎠

 

where, parameter p lies within the open interval (0, )∞ . For simplicity we denote 
the t-norm with i, and the t-conorm with u, where the subscripts refer to the initial 
of the name of the norm: e.g., in case of Yager norms: iY(x,y) = x iY y and uY(x,y) = 
x uY y. 

3 Multilayer Perceptrons Constructed of Fuzzy Flip-
Flops (Fuzzy Neural Network, FNN)  

In general, two trainable layer networks with sigmoid transfer functions in the 
hidden layer and linear transfer functions in the output layer are universal 
approximators [8]. The neuro-fuzzy system proposed here is based on two hidden 
layers constituted from fuzzy flip-flop neurons. The FNN is a supervised 
feedforward network, applied in order to approximate a real life application, a two 
dimensional trigonometric function and a six dimensional benchmark problem. In 
a two-stage approximation process some neurons in the first layer split the input 
space into regions, and other neurons in that layer learn the local features [5]. A 
neuron in the second layer combines the output of neurons in the first layer, 
learning the global features for that region. 
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3.1 Parameter Optimization in the Fuzzy Neural Network 

A change of t-norms, Q and p parameter value pairs in the fuzzy flip-flops 
characteristic equations leads to the modification of the slope of the transfer 
function, which will affect the learning rate in the implementation of neural 
networks. In the next it will be show that the near-optimal values of Q are 
independent from the input function type and FNN neuron number for a fix fuzzy 
operation parameter value. For simplicity the value of the parameters were fixed 
to p = 2 and respectively to 5 in case of Yager and Dombi fuzzy operations. It is 
known that simple parametrical t-norms, furthermore simple fuzzy flip-flop 
characteristic equation are uncomplicated for tuning and hardware realization. 
Rudas et al. [15] proposed the hardware implementation of a generation of 
parametric families of fuzzy connectives together with min-max, Łukasiewicz and 
drastic t-norms and co-norms. In [17] Zavala et al. used FPGA technology to 
implement the above mentioned fuzzy t-norms into an 8 bit single circuit that 
allows operation selection.  

In this section optimal FNN parameter searching methods are presented. In 
particular for a predefined network architecture a gradient descent optimization 
method and an evolutionary algorithm tune the values of the parameter Q for fixed 
fuzzy operation parameter values. The application of several model identification 
algorithms in order to achieve as good as possible approximation features of the 
FNN have been proposed. The Levenberg-Marquardt algorithm is applied to 
determine the optimal Q intervals in subsection 3.1.1. In subsection 3.1.2 the 
BMAM method is proposed to identify in the established interval the problem 
dependent quasi optimal values. 

3.1.1 Levenberg-Marquardt Algorithm (LM) 

A second-order gradient algorithm, the Levenberg-Marquardt method is applied to 
find the optimal Q intervals for every combination of fuzzy J-K and D flip-flops 
with Yager and Dombi fuzzy operations. 

To train this kind of network with the usual Levenberg-Marquard technique the 
derivatives of the transfer functions have to be calculated. Then the FNN can be 
used and trained in the usual way. During network training, the weights and 
thresholds are first initialized to small, random values and the network was trained 
in order to minimize the network performance function according with Levenberg-
Marquardt algorithm with 100 maximum numbers of epochs as more or less 
sufficient. This can be used for training any network as long as its inputs, weights, 
and transfer functions can be differentiated. During the simulations the input data 
patterns were used like this: the first 60 percent for training and the remaining 20-
20 percents for validation and test results. In order to check the goodness of the 
training in the test phase, the Mean Squared Error (MSE) as a measure of the error 
made by the FNN was used.  
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The errors for all input patterns were propagated backwards, from the output layer 
towards the input layer. The corrections to the weights were selected to minimize 
the residual error between actual and desired outputs. This algorithm can be 
viewed as a generalized least squares technique applied to the multilayer 
perceptron. The chosen target activation function is the tansig (hyperbolic tangent 
sigmoid transfer function).  

The lowest MSE value indicated the optimal Q value which might lead to good 
learning and approximation properties. The result obtained for the training and test 
sets give the 300 runs average approximation goodness value. During simulations 
the median MSE values have been compared, considering them as the most 
important indicators of trainability. The median is a robust estimate of the center 
of a data sample, since outliers have little effect on it.  

3.1.2 Bacterial Memetic Algorithm with Modified Operator Execution 
Order Algorithm (BMAM) 

In the Bacterial Memetic Algorithm with Modified Operator Execution Order 
Algorithm, the learning of a neural network is formulated as a weight optimization 
problem, usually using the mean square error as fitness evaluation scheme. It has 
been shown that evolutionary algorithms work efficient for solving nonlinear and 
constrained optimization problems. These methods do not use derivatives of the 
functions, such as the gradient-based training algorithms. Similar to biological 
recombination, these methods are based on the search for a large number 
(population) of solutions. The algorithm starts with several alternative solutions to 
the optimization problem, which are the population individuals. The solutions are 
coded as binary strings. The basic steps followed by the algorithm embrace the 
bacterial mutation operation and the LM method.  

The FNN weights, biases and Q values have been encoded in a chromosome and 
participated in the bacterial mutation cycle. In this application, according to the 
network size, a population with different parameters was initialized. Therefore a 
procedure is working on changing the variables, testing the model obtained in this 
way and selecting the best models. During simulations 200 generations of 5 
individuals with 5 clones were chosen to obtain the best fitting variable values, 
with the lowest performance. Then the same part or parts of the chromosome is 
choose and mutate randomly, except one single clone that remains unchanged 
during this mutation cycle. The LM method nested into evolutionary algorithm is 
applied for 5 times for each individual. The selection of the best clone is made and 
transfers its parts to the other clones. The part choosing-mutation-LM method-
selection-transfer cycle is repeated until all the parts are mutated, improved and 
tested. The best individual is remaining in the population, and all other clones are 
deleted. This process is repeated until all the individuals have gone through the 
modified bacterial mutation. The Levenberg-Marquardt method is applied 7 times 
for each individual, executing several LM cycles during the bacterial mutation 
after each mutation step. 
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In this way the local search is done for every global search cycle. The quasi 
optimal values can be identified at the end of the BMAM training algorithm.  

Using the BMAM algorithm, executing several LM cycles after each bacterial 
mutation step, there is no need to run a few hundred training cycles to find the 
lowest MSE value. After just one run the optimal parameter values could be 
identify. The optimal Q intervals obtained with the LM algorithm have been 
reduced in this case to a single quasi optimal value identified at the end of the 
training process. In this approach, with only one training cycle an acceptable 
model whose error does not exceed an acceptable level has been obtained. 

4 Numerical Simulation and Results 

The FNN architecture is predefined, depending on the input function complexity. 
The proposed network topologies approximate with sufficient accuracy the test 
functions. The FNN training algorithm applied to different architectures will have 
different performance. In this approach the choice of an optimal network design 
for a given problem is a guessing process. With a sufficient neuron number the 
network can be trained with a sufficient accuracy in sufficient training time. In 
particular, the application of LM and BMAM algorithms are proposed for training 
various FNNs with different structures in order to approximate a real-life 
application, a two dimensional trigonometric function and a benchmark problem 
which dates were selected from the input/output test points of a six dimensional 
non-polynomial function. The quasi optimization of FNN is demonstrated in the 
following case studies. The test functions are arranged in the order of complexity.  

Real - Life Application: Approximation of a Nickel Metal Hydride Battery 
Cell Charging Characteristics 

In this particular case, the FNN approximates a Nickel Metal Hydride (NiMH) 
Battery Cell charging characteristics [3], a on one-input real-life application.  

The nickel-metal batteries can be repeatedly charged and discharged for about 500 
cycles, in approx. 1 hour. The charge characteristics are affected by current, time 
and temperature. The battery voltage raises when the charging current is increased 
or when the temperature is low. The test function is a characteristic between the 
battery capacity input and the cell voltage. The battery type was GP 3.6V, 
300mAH, 3x1.2V NiMH, tested during 1.5 hour with 300mA and 25˚C.  

Two - Input Trigonometric Function 

We used the next two dimensional polynomial input function as test function 
2

100 cos
2

− ⎛ ⎞= ⋅ ⎜ ⎟
⎝ ⎠

r ry e ; where [ ]2 2
1 2 1 2r x x , x ,  x 20,20= + ∈ −   (6) 
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Six Dimensional Non-Polynomial Function 

This widely used target function expression is given by the following expression 
[1]: 

( )5 620.5
1 2 3 4 2 −= + + + x xy x x x x e                                                                          (7) 

4.1 Case Study 1: Optimization of Q with LM Algorithm 
Figure 1 shows the fluctuation of the Q values for fuzzy J-K and D flip-flops 
based on Yager norms. The real-life application (denoted with 1D) is 
approximated with a 1-2-2-1 FNN size, described by a set of 543 input/output data 
sets selected equidistantly from a set of 2715 test points. A 1-20-20-1 feedforward 
neural network structure based on F3s was proposed to approximate the two input 
trigonometric function (denoted with 2D), represented by 1600 input/output data 
sets. To approximate the six dimensional problem we studied a 1-10-5-1 FNN 
(6D-1) furthemore a 1-10-10-1 FNN (6D-2) sizes given by 200 datas. 

The number of neurons was chosen after experimenting with different size hidden 
layers. Smaller neuron numbers in the hidden layer result in worse approximation 
properties, while increasing the neuron number results in better performance, but 
longer simulation time. 

Evaluating the simulation results, low MSE values appears in the same domains 
which fact leads to assess optimal Q intervals, depending less from the input 
function type and FNN neuron number for a fix fuzzy operation parameter value. 
In case of J-K FNN based on Yager norms the Q optimum interval is [ ]0  0.3; , in 

case of D type FNN based on the same norms [ ]0 1  0.3Q . ;∈ (see Figure 1). The 
LM training algorithm is very sensitive to the parameter’s initial position in the 
search space. An inconvenient generated random parameter set leads in a hardly 
trainable neural network with bad performance, because the LM method is a local 
searcher.  
      
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1  

Training MSE median values for J-K FNN and D FNN based on Yager norms 
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4.2 Case Study 2: Optimization of Q with BMAM Algorithm 
Using the BMAM algorithm, executing several LM cycles after each bacterial 
mutation step, there is no need to run 300 training cycles to find the lowest MSE 
value. After just one run the optimal parameter values could be identified. The 
quasi optimal Q values for various FNNs identified by the BMAM algorithm are 
listed in Table 2. The optimal Q intervals obtained with the LM algorithm have 
been reduced in this case to a single quasi optimal value identified at the end of 
the training process. In this approach, with only one training cycle an acceptable 
model whose error does not exceed an acceptable level has been obtained.  

4.3 Comparison of Different FNNs with Respect to the 
Training Algorithm  

 
Figure 2 (real-life application) presents the graphs of the simulations in case of 
fuzzy J-K and D flip-flops trained with BMAM algorithms based on Yager and 
Dombi norms, using quasi optimized values.  

 

 

 

 

 

 

 

 
Figure 2  

Simulation results of J-K FNN based on Dombi norms and D FNN based on Yager norms 

 

 

 

 

 

 

 

 
Figure 3  

Simulation results of traditional NN and J-K FNN based on Dombi norms 
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TABLE 2 TRAINING MSE MEDIAN AND QUASI OPTIMAL Q VALUES  

Test 

Func. 

tansig 

NN 

J-K FNN D FNN 

Yager type  Dombi type Yager type Dombi type   

Q MSE  Q MSE  Q MSE Q MSE 

1D 

1-2-2-1 

1.34   
e-05 

0.06 7.82 
e-05 

0.27 1.96 
e-05 

0.26 2.12 
e-05 

0.21 3.27 
e-04 

2D 

1-20-20-1 

4.38   
e-07 

0.13 1.41 
e-05 

0.21 2.56 
e-06 

0.24 5.77 
e-06 

0.22 8.41 
e-04 

6D 

1-10-10-1 

3.84   
e-07 

0.30 3.21 
e-04 

0.25 1.31 
e-06 

0.31 1.14 
e-04 

0.19 4.45 
e-02 

 
Figure 3 compares the approximation goodness of the traditional neural network 
and J-K FNN based on Dombi norms in order to approximate the two dimensional 
test function. Table 2 summarizes the near optimal Q values for fixed fuzzy 
operation parameter values furthermore the average approximation goodness made 
by BMAM algorithm, indicating the median MSEs.  

The BMAM algorithm is efficient in searching the global minimum, but this 
method still search in a subset of all possible parameters. The number of 
generations and the population size are fixed, chosen corresponding to the 
difficulty of the problem to be solved. There is no guarantee that a FNN will 
converge to the local optimum after those generations. The mentioned training 
algorithms produce different training results. Comparing the corresponding MSE 
median values (Figure 1 and Table 2) we concluded that the bacterial memetic 
algorithm combined with the LM method produces better function approximation 
performance in every case than the LM alone. For example, the Yager type D 
FNN, 2D function approximation case, LM may reduce the FNN error to         
1.51 e-04 (Figure 1) through training, but the BMAM could reduce the error to 
5.77 e-06 (Table 2) due to its global search capability. Several test function have 
been used to test that the values of the parameter Q are less dependent (with 
values in a narrow interval) from the input functions and network size for a fixed 
fuzzy operation parameter value.  

Conclusions  

The benefits arising from the combination between ANNs, fuzzy systems and 
bacterial memetic algorithms have been investigated in this paper. A hybrid 
algorithm is proposed combining the mentioned methods for FNN parameter 
optimization and training. The BMAM method achieves better function 
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approximation results than the non-evolutionary LM algorithm. The best training 
algorithm is always problem dependent. Future scope for research lies in the 
investigation of a simultaneous optimization of the FNN learning parameters and 
network architecture.  
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