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Abstract: Thinning or skeletonization is a process for reducing foreground regions in a 
binary image to a skeletal remnant that largely preserves the extent and connectivity of the 
original region while throwing away most of the original foreground. Thinning is 
commonly used in digital image processing, pattern recognition, image analysis and not 
least, in signature verification. The goal of this paper is to introduce the most common 
thinning methodologies and propose a method to evaluate their performance, especially in 
the field of signature recognition. The proposed evaluation method is intended to be 
objective, therefore it takes into account various properties of a thinned skeleton and 
compares them to those of an ideal reference image. Fifteen different algorithms have been 
implemented and rated using this method, the results showed that different kinds of 
skeletonization techniques have different benefits and drawbacks, however none was found 
to give perfect results. 
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1 Introduction 
The main motivation of this survey was to improve the performance of a signature 
verification system by surveying the most common thinning algorithms and giving 
an estimation about their accuracy. A highly modularized framework was 
available which breaks down the signature analysis process into well delimited 
steps. The first of these steps is the preprocessing phase in which the input images 
come through various transformations, including thinning. 

The inputs of this application are usually scanned hand-written signatures which 
can not be processed in their original form by the latter modules of the verification 
system. The purpose of thinning in the preprocessing phase is cleaning the image 
of any kind of noise caused by the scanning and to extract a binary, one pixel wide 
skeleton from the hand-written signature. The discrete skeletons obtained this way 
can be efficiently interpreted by the other modules of the process. 
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The aim was to select characteristics of the result skeletons which can be directly 
examined and compared to those of a reference skeleton. In this way a well 
defined and objective estimation can be given on the performance of each thinning 
procedure. 

This paper is organized as follows: In Section 2 the most common kinds of 
algorithms are introduced, then in Section 3 our proposed estimation method is 
explained in detail. The last section of the paper shows some of the benchmark 
results 

2 Survey of Related Work 
The concept of thinning came with the improvement of digital computers and with 
the need of efficient processing of digitalized images. The widely used 
methodologies have gone through plenty of changes and improvements in the last 
decades. The algorithms can be categorized as follows: 

2.1 Morphology 
The first attempt at extracting skeletons from binary images was using the 
operators of mathematical morphology (MM) which had been already invented at 
the time and been used for texture analysis. 

The basic idea in binary morphology is to probe an image with a simple, pre-
defined shape (called the “probe” or “kernel”), drawing conclusions on how this 
shape fits or misses the shapes in the image. For thinning, the most important 
operation of MM is erosion, of which the basic effect is to erode away the 
boundaries of regions of foreground. Thus areas of foreground pixels shrink in 
size, and holes within those areas become larger. 

 
Figure 1 

The erosion of the dark-grey square by a disk, resulting in the light-grey square 
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Erosion in itself does not produce appropriate skeletons, but the approach of this 
method is clearly noticable in more complex algorithms, especially in windowing. 

2.2 Raster Scanning 
According to [2], execution of raster scan algorithms usually happens as follows: 

1 All the pixels of the binary image are examined in a predetermined order1 

2 A set of conditions is evaluated for each pixel, either marking it for 
deletion or retention 

3 At the end of the iteration all the pixels marked for deletion are erased 
from the image and the process jumps back to step 1. 

If in an iteration there was no pixel deleted, then the thinning process is done and 
the remaining black pixels are ought to form the skeleton of the image. 

What raster scan algorithms differs from each other is the set of conditions which 
is evaluated in order to decide wether to delete or retain a pixel. Different 
condition sets preserve different characteristics of the input image. 

2.3 Windowing 
A specialized version of the hit-and-miss morphological operator is used in 
numerous thinning algorithms, and it is usually referred to as windowing or 
masking. 

A thinning mask is an arbitrary-sized but usually small grid, in which each cell 
denote a custom condition. The mask is fitted onto a region of the tested image, 
then the conditions of the cells are evaluated for the pixel which is under the given 
cell. We say that the mask fits onto the region of the image, if every pixel under 
the mask satisfies the corresponding condition. 

This technique is used in raster scan algorithms, where the conditions evaluated 
for each pixel are given in form of a thinning mask [3]. 

A A A 
0 P 0 
B B B 

Figure 2 
Example of a commonly used thinning mask 

                                                           
1  In some cases only the borders of connected objects are examined (contour 

following). 
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In Figure 2 an example of thinning masks can be seen, where the meaning of the 
mask cells are the follows: 

• Pixels marked with 0 have to belong to the background (white) 

• Pixel marked with P is the center point, it is the point where the mask is 
fitted onto an image 

• Each group of pixels marked with A or B must have at least one 
foreground (black) pixel 

The mask is used to preserve connected components of an image, because if it (or 
any of its 90° rotation) fits onto a pixel, it means that erasing it would break apart 
a connected component into two distinct parts. 

2.4 Complex Methods 
There are numerous other algorithms which do not fit into the above categories. 
Usually they are based on a unique idea with which the skeleton of an image can 
be extracted. 

One example is the Sparse Pixel Vectorization method in which a ray is casted and 
traced inside the foreground of the image components and then the medial points 
of the rays are connected [4]. An other example is the line following algorithm 
proposed by Peng in [5], which attempts not to iteratively erode contour pixels, 
but extract the skeleton by following the two sides of the in the input image (this 
method is stated as a natural approach, considering that the human eye identifies 
lines in the same way). 

These algorithms are usually more complex to implement and can be quite 
vulnerable to various attributes of the input skeletons, thus careful configuration of 
them might be needed in each environment, depending on the line width and other 
properties of the input shapes. In return they can perform considerably well in 
certain areas and usually have low computational cost, since they do not have to 
examine every pixel, nor to iterate recursively. 

3 Proposed Method 
The goal of the proposed method is to objectively evaluate the performance of the 
different thinning algorithms. The process uses reference images provided by the 
database of the signature verification project. Imitated signatures have been 
created from one pixel wide reference skeletons, then the signatures have been 
thinned with the skeletonization algorithms. At last the thinned result of each 
algorithm is compared to the ideal reference skeleton. 
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3.1 Pratt Evaluation 
The starting point of the comparing technique is the evaluation algorithm 
introduced by Pratt in [6]: 

Let NR and NA be the number of foreground (black) points in the reference 
skeleton and the actual thinned result, respectively. The distance between the i-th 
pixel of the result skeleton and the pixel of the reference skeleton nearest to it is 
notated by di. The Pratt evaluation score is defined by 

 

where  and a is a scaling constant, adjusting the level of 
penalization for distances. 
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Figure 3 
Example of a Pratt evaluation rating 

In the above example the evaluation score is calculated as follows: 
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if  is chosen to be 1/9 (which is a typically used value [6]). 

If the two compared skeletons are identical to each other, then the result is 1.0 and 
lower values mean lower level of similarity. 

3.2 Proposed Improvement 
The main problem of the above method is that it does not take into consideration 
the number, position and direction of end points in the input images, however, 
they would be important characteristics of skeletons in the field of signature 
analysis.  

The improved algorithm firstly executes the Pratt evaluation described above, let 
the result score be denoted by P0. Then the two images are scanned to obtain all 
their endpoints. Then the position of the result end points are compared to the 
reference end points, using the the Pratt evaluation method again, but in this case 
only the end points are given as input. Let the result of the second evaluation be 
denoted by PEP. 

Finally, the directions of the endpoints are analyzed. In this case, a black point is 
considered to be an end point if it has exactly one black neighbor pixel. Thus there 
are eigth possible end point directions depending on the position of the one black 
neighbor. 

 
Figure 4 

Different possible end point directions 
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In order to compare the end points of the reference and the result, a new metric has 
to be defined: the difference of end point directions. The  difference between the 
directions of two end points is the number of 45° rotations needed to transform the 
one end point into the other (rotation means shifting the black neighbor one step 
along the neighborhood of the end point). 
 

 
End point A End point B 

Figure 5 
Example of calculating difference between end point directions 

In Figure 5 two end points can be seen, where the difference between their 
directions is 3, because it would take 3 rotations to transform one to be identical to 
the other. We denote this difference by EPD(A, B). 

The values obtained this way are summarized in the same manner the Pratt 
evaluation method sums the minimum distances. Let NEPR and NEPA be the count 
of end points in the reference and in the actual result skeleton, respectively. 
Therefore 

 

is the evaluation score of the end point directions, where  is the i-th end point 

of the actual result skeleton and  is the nearest end point to it in the reference 
skeleton. 

To sum up, we have three metrics about the precision of the skeleton: P0 rates its 
shape in general, PEP the position and number of end points and PEPD the direction 
of end points. The avarege of these three values gives a general evaluation about 
the similarity of two skeletons thus the performance of different thinning 
algorithms can be rated by comparing the result of each one to a reference 
skeleton. 
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4 Experimental Results 
The following fifteen algorithms have been implemented and tested with the 
above evaluation method: raster scan by Rutovitz, 1966 [3], raster scan by Yokoi, 
1973 [2], window matching by Beun, 1973 [2], contour scan by Arcelli, 1978 [2], 
window matching by Pavlidis, 1981 [2], raster scan by Holt, Stewart, Clint and 
Perrott, 1987 [3], window matching by Chin, Wan, Stover and Iverson, 1987 [3], 
raster scan by Zhang and Wang, 1988 [3], raster scan by Eckhardt and 
Maderlechner, 1993 [3], window matching by Wu and Tsai, 1992 [3], raster scan 
by Guo and Hall, 1992 [3], window matching by Jang and Chin, 1992 [2], raster 
scan by Hilditch, [2], and the  Sparse Pixel Vectorization method by Dov Dori and 
Wenyin Liu, 1999 [4]. 

Firstly, all algorithms have been tested with 4 simple shapes shown in Figure 6. 
Some examples of the different results can be seen in Figure 7. The average 
ratings calculated with the proposed evaluation methods are shown in Figure 8. 

 
Figure 7 

Test input shapes and their corresponding reference skeletons 

 

Figure 8 
Examples of the results given by different algorithms to the L shape as input 

Algorithm Pratt 
rating 

End point 
rating 

End point 
direction rating Average 

YokoiRasterScan 0,84007894 0,62790482 0,913682432 0,79388873 

RutovitzRasterScan 0,83132284 0,55486695 0,91097561 0,7657218 

SPVThinning 0,84003723 0,48583145 0,941112378 0,75566035 

JangChinWindowMatching 0,81077425 0,54068627 0,9 0,75048684 

BeunWindowMatching 0,76381305 0,56066017 0,904560811 0,74301135 

HilditchRasterScan 0,78832559 0,54068627 0,9 0,74300396 

ZWRasterScan 0,78758747 0,54068627 0,9 0,74275791 

HSCPRasterScan 0,78758747 0,54068627 0,9 0,74275791 

GuoHallARasterScan 0,80575579 0,4745098 0,911946903 0,7307375 

PavlidisWindowMatching 0,8709161 0,30735294 0,955736253 0,7113351 

EckhardtMRasterScan 0,87035159 0,30735294 0,955736253 0,71114693 

GuoHallBRasterScan 0,73783886 0,33284314 0,935516944 0,66873298 
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WTWindowMatching 0,65657694 0,35487153 0,924324324 0,6452576 

CWSIWindowMatching 0,70237822 0,29221814 0,940488968 0,64502844 

ArcelliCountourScan 0,48369098 0,36068405 0,929268293 0,59121444 

Figure 9 
Performance of the different algorithms with the simple shapes as inputs 

Note that some of the algorithms obtained identical ratings, which  is because to 
these simple shapes they have given perfectly identical results. 

The next step was to evaluate the performance using more complex input shapes, 
which were chosen to be human signatures in this case. The database of the 
Signature Verification Competition 2004 [7] with 40 different signature types was 
used to render the one pixel wide skeletons of real signatures, captured with 
digitalizer tablets. From these skeletons imitated signatures have been created 
which served as the input of the thinning algorithms. Finally, the results were 
compared to the reference skeletons. 

 
Figure 10 

Example of a reference skeleton and the imitated signature created from it 

 

Figure 11 
Some examples of the thinning results 
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Algorithm Pratt 
rating 

End point 
rating 

End point 
direction rating Average 

WTWindowMatching 0,86660286 0,39190531 0,961306128 0,7399381 

RutovitzRasterScan 0,91900608 0,32707126 0,953919253 0,7333322 

JangChinWindowMatching 0,87670026 0,36526506 0,952012679 0,731326 

HSCPRasterScan 0,91310922 0,32348931 0,954824039 0,73047419 

YokoiRasterScan 0,8600851 0,36853022 0,951306458 0,72664059 

ZWRasterScan 0,90867065 0,31057388 0,954478371 0,7245743 

HilditchRasterScan 0,84330167 0,33539488 0,949071549 0,70925603 

BeunWindowMatching 0,83639705 0,31214975 0,948800185 0,69911566 

GuoHallARasterScan 0,91052146 0,1166814 0,968222951 0,66514194 

EckhardtMRasterScan 0,82071934 0,25649282 0,874822298 0,65067815 

PavlidisWindowMatching 0,81775327 0,22797358 0,874648506 0,64012512 

GuoHallBRasterScan 0,87088713 0,06135171 0,973832554 0,63535713 

SPVThinning 0,76789649 0,13460885 0,966371038 0,62295879 

ArcelliCountourScan 0,57647139 0,2877483 0,960008535 0,60807608 

CWSIWindowMatching 0,5558805 0,01957329 0,972337455 0,51593042 

Figure 12 
The average ratings, tested with 40 signatures 

In the benchmark test the raster scan algorithm by Guo and Hall obtained fairly 
high score by the Pratt evaluator, (it had the third best rating) while it performed 
rather poorly in the end point rating. 

 

Reference skeleton 
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Imitated signature 

 

Raster scan by Guo and Hall 

Figure 13 

In Figure 13, a skeleton produced by the above mentioned algorithm can be seen. 
The result contains several small gaps, especially in the diagonal lines (it does not 
preserve connectedness, which is an important aspect of every skeletonization 
method). This is not desirable, since some of the latter phases of the signature 
verification process would work with upstrokes, which are falsely recognized by 
this algorithm.  

However, the Pratt evaluator does not penalize this kind of error (in fact, the lack 
of black points can even increase the rating). On the other hand, the score given by 
our improved evaluation method is significantly lower, because the “broken” line 
segments represent many false end points, which is well reflected by the the poor 
end point rating, and therefore low average value. 
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Conclusions 

Each of the fifteen algorithms yielded slightly different skeletons, however, all 
provided acceptable result. The raster scan and the window matching algorithms 
had similar performance in this survey, while the only complex algorithm tested 
(Sparse Pixel Vectorization) performed rather poorly. It was shown, that our 
proposed distance measures can detect and characterise some of the special 
aspects of skeletons and thereby provide significant improvements to Pratt rating 
algorithm in the field of signature verification. 
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