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Abstract:. By using special group of fuzzy operators like distance based operators or 
uninorms a novel reasoning method appears, which is based on residual operators of 
uninorms. The 3-dimensional representation of the compositional rule of inference will 
be given.1   
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1 Introduction 

In fuzzy control system the system state is described by a fuzzy rule base 
system, and the relationship between fuzzy rule base system, system output and 
system input is modelled by compositional rule of inference. The concept of 
approximate reasoning in the known framework of the linguistic information was 
introduced by Zadeh [13].  

The first successful practical applications of fuzzy sets were realized by means 
of the Mamdani inference [10], but the Mamdani’s approach is not fully coherent 
with the paradigm of approximate rasoning [3], [9].  

In the fuzzy rule based control theory and usually in the approximate 
reasoning, as well as in the covering over of fuzzy rule base input and rule premise 
of a rule determine the importance of that fuzzy rule and the rule output, too. The 
practical realization of that notion usually depends on the application, see [18], 
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[19] .  A very thorough overview of mathematical background of that principle 
can be found in [4], [6]. 

The Mamdani type controller is based on Generalized Modus Ponens (GMP) 
inference rule, and the rule output is given with a fuzzy set, which is derived from 
rule consequence, as a cut of them. This cut is the generalized degree of firing 
level of the rule, considering actual rule base input, and usually it is the supremum 
of the minimum of the rule premise and rule input (calculating with their 
membership functions, of course). The firing level depends on the covering over 
of the rule base input and rule premise, but first of all it depends on the height of 
those covered membership functions. Engineering applications are satisfied with 
the minimum operator, but from a mathematical point of view it is interesting to 
study the behavior of other t-norms in inference mechanism. The using of distance 
based operators in fuzzy control theory (FLC) was described in [11],[12].  

In fact the uninorms offer new possibilities in fuzzy approximate reasoning, 
because the low level of covering over of rule premise and rule input has 
measurable influence on rule output as well. In some applications the meaning of 
that novel t-norms, has practical importance. The modified Mamdani’s approach , 
with similarity measures between rule premises and rule input, does not rely on 
the compositional rule inference any more, but still satisfies the basic conditions 
supposed for the approximate reasoning for a fuzzy rule base system [17]. 

From mathematical point of wiev, and having results from [14], we can 
introduce residuum-based inference mechanism using distance-based uninorms .  

2 Modified distance-based operators 

The distance-based operators can be expressed by means of the min and max 
operators as follows (the only modificaton on the original published distance 
based operators in [8] is the boundary condition for neutral element e): 

the maximum distance minimum operator with respect to ] ]10,e∈  is defined as 
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the minimum distance minimum operator with respect to [ [10,e∈  is defined as 
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the maximum distance maximum operator with respect to ] ]10,e∈  is defined as 
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the minimum distance maximum operator with respect to [ [10,e∈  is defined as 
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The distance-based operators have the following properties  
min
emax  and  are uninorms, max

emax

the dual operator of the uninorm  is , and min
emax max

emax −1
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  Based on results from [14] and [15], we conclude: 

Operator   is a conjunctive left-continuous idempotent uninorm 
with neutral element  with the super-involutive decresing unary operator 
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Operator   is a disjunctive right-continuous idempotent uninorm 
with neutral element  with the sub-involutive decresing unary operator 
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2.1 Idempotent uninorms  

A binary operator V is called idempotent [15], if ( ) ( )Xx,xx,xV ∈∀= . It is 
well known, that the only idempotent t-norm is min, and the inly t-conorm is max.  

In [15] and [14] has studied two important classes of uninorms: the class of 
left-continuos and the class of right-continuos ones.  

If we suppose a unary operator g on set [0,1], then g is called  

(i) sub-involutive if  ( )( ) xxgg ≤  for [ ]( )10,x∈∀ , and 

(ii) super-involutive if  ( )( ) xxgg ≥  for [ ]( )10,x∈∀ .  

A binary operator U is a conjunctive left-continuous idempotent uninorm with 
neutral element  if and only if there exist a super-involutive decresing 

unary operator g with fixpoint e  and 
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A binary operator U is a dijunctive right-continuous idempotent uninorm with 
neutral element  if and only if there exist a sub-involutive decresing unary 

operator g with fixpoint e  and 

[ [10,e∈

( ) 01 =g  such that U for any ( ) [ ]210,y,x ∈∀  is 
given by  

( ) ( ) ( )
( )⎩

⎨
⎧ ≥

=
elsewherey,xmin

xgyify,xmax
y,xU . 

2.2 Residual implicators for uninorms  

In [14] we find general theoretical results related to residual implicators of 
uninorms, based on residual implicators of t-norms and t-conorms.  

Residual operator RU, considering the uninorm U , can be represented in the 
following form: 

( ) [ ] ( ){ }yz,xU,zzsupy,xRU ≤∧∈= 10 . 

Uninorms with neutral elements 0=e  and 1=e are t-norms and t-conorms, 
respectivly, and related residual operators are weidly discussed [5],[6][14]. In [14] 
we also find suitable definitions for uninorms with neutral elements ] [10,e∈ . 



If we consider a uninorm U with neutral element ] [10,e∈ , then the binary operator 
RU  is an implicator if and only if ] [( ) ( )( )001 =∈∀ z,U,ez . Furthermore RU  is an 
implicator if U is a disjunctive right-continuous idempotent uninorm with unary 
operator g satisfying [ ]( ) ( )( )1010 =⇔=∈∀ zzg,z .  

The residual implicator RU  of uninorm U can be denoted by ImpU.  

 2.3 Residual implicators of distance based operators 

According to Theorem 8. in [14] we introduce implicator of distance based 
operator .  min

.max 50

Consider the conjunctive left-continuous idempotent uninorm   with the 
unary operator , then its residual implicator  is given by 
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Figure 1. The 3-dimensional representation of  implicator  min

.maxImp
50



4  Conclusions 

Despite the fact, that Mamdani’s approach is not entirely based on compositional rule of 
inference, it is nevertheless very effective in fuzzy approximate reasonng. Because of this it 
is poosible to apply several t-norms, or, as in this case, uninorms. In this paper a residual-
based approach and its 3-dimensional representation was presented usind general results for 
residual implicators of uninorms. This leads to further tasks and problems, because in any 
case there must be a system of conditions that is to be satisfied by the new model of 
inference mechanism in fuzzy systems.  
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