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Abstract: 
This paper presents a method for optimal control of hybrid systems. An inequality of 
Bellman type is considered and every solution to this inequality gives a lower bound on the 
optimal value function. A discretization of this “hybrid Bellman inequality” leads to a 
convex optimization problem in terms of finitedimensional linear programming. From the 
solution of the discretized problem, a value function that preserves the lower bound 
property can be constructed. An approximation of the optimal feedback control law is given 
and tried on some examples. 
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1. Introduction 
 
Hybrid systems are systems that involve interaction between discrete and 
continuous dynamics.  Such 
systems have been studied with growing interest and activity in recent years. Very 
often, the same phenomenon can be described either by a discrete model or a 
continuous one, depending on the context and purpose of the model [1].  One 
reason for the interest is that modeling and simulation of a complex system often 
require a combination of mathematical models from a variety of engineering 
disciplines. Practical control systems typically involve switching between several 
different modes, depending on the range of operation. Basic aspects of hybrid 
systems were treated in [6],[7]. For stability analysis, see [3] and references 
therein. Related methods were discussed for discrete systems in [2] and on an 
abstract level for hybrid systems in [4]. This paper presents a novel computational 
approach to optimal control of hybrid systems, based on ideas from dynamic 
programming and convex optimization. Discretization of Bellman’s inequality 
gives a lower bound on the optimal cost in terms of linear programming. 
  
2. Problem Formulation  
 
Define a hybrid system as  
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where  is the state vector,  is a continuous 
input signal of the system.  
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There is also a discrete input, μμ Ω∈)(t , which allows for the selection between 

N different system modes, { }NQtq ,...,2,1)( =∈ . ,  The notation  is 
used for the left-hand limit of q at t. Sq,,r is a set (parameterized by q and ) such 
that switching from mode q to r is possible when 
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argument, t, will often be omitted in the sequel for readability.  
The optimal control problem is to minimize the cost function 
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subject to (1) while bringing the system from an initial state at time , 

to a final state   at time , where the end time, , is free. Here, M 
is an arbitrary finite number of switches occurring at times 

and  is an associated cost for 
switching from discrete state  to 

),( 00 qx 0t
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q r , the continuous part being x just before the 

switch. Note that removes the problem of infinitely many jumps in a 
finite interval. The framework developed in this paper would also allow the 
number of continuous states to vary with the discrete mode according to 

,  
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where . The usage of the system 

description H1I, however, will hopefully prevent the reader from getting stuck on 
details.  
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3. Lower Bounds on Optimal Cost  
 
Let  be a set of continuous, piecewise  functions 

 that satisfy 

NqRXVq ,...,2,1,: =a
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where gives the dynamics of a hybrid system,  and  

define a cost function for the system. Then, for every gives a 

lower bound on the cost for optimally bringing the system from to 
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Evidence:  Let  and   be control signals that drive the system from 

 at time   to  at time 
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trajectory resulting from   and define  and  
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The optimal value function,  will meet the the constraints (3)-(5) also, 

under appropriate interpretation of 

)(* xVq

xxVq ∂∂ /)( . So therefore the inequalities do 
not introduce any conservatism in the lower bound.  
 



4. Discretization  
 
Impose a computer to solve (3)-(5) for a specific control problem, a  approach is to 
grid the state space to require the disparities to be met at a set of evenly distributed 
points in X. In the case of a two-dimensional continuous state space, introduce the 
notation 
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where  and  are unit vectors along the coordinate axes, and  is the grid 
size. 

1e 2e h

Introduce new vector variables,  for (j, k, q) such that njk
q R∈λ

QqXx jk ∈∈ , . The disparities (3)-(5) can then be replaced by 
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where (6)-(8) form a combination of backward and forward difference 
approximations of (3). 
 

 
 
 

Figure 1: Illustration of jkX and 
∧

jkX . 
 
For , define the interpolating function jk
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4.1 Discretization in  2R  
 
If  satisfy (6)-(10) for all  jk

qV Qq∈ and for all grid points such 

that 

2RXx jk ⊂∈
jkX  intersects X , then the interpolating function defined by (11) 

satisfies (3)-(5) and, for every  is a lower bound of .  
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The gradient of is given [???] by qV
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The disparity (4) is met since  is a convex combination of grid points that all 
meet (9), and (5) is the same condition as (10). 
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Note a special case in which the computational load of the local optimizations in 
Discretization in  2R  is lightened: if uxgxhuxf qqq )()(),( += and  

 while uxmxouxl qqq )()(),( += ],1,1[−=Ωu  then  can be entirely 

eliminated from (6)-(8) by replacing  , , and  with 

 and  respectively. This will double the set of 

equations (6)-(8), but the functions  and are optimized over 
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 5. Computing the Control Law  
 
Provided that the lower bound, , is a good enough approximation of the 
optimal cost, the optimal feed-back control law can be calculated as 
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where ),,( μqxvv = . Thus, the continuous input, , is computed in a standard 

way. The discrete input, , is chosen such that switching occur whenever there 
exist a discrete mode for which the value function has a lower value than the cost 
of the value function for the current mode minus the cost for switching there. 
Consider the true optimal value function, . For those where the 
optimal trajectory requires mode switching, the inequality (3) will turn to equality 
i.e. (this will be shown in example. A consequence of this 

is that for (13) to describe correct switching between the modes, has to 
be defined as 
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0),,( >= εqqxs (rather than the real cost 0),,( =qqxs . For 

 , the proper control law is achieved as *
qV ε  approaches . A small value of +0

ε suffices, however, for numerical computations. Integration of (2) along a 
simulated trajectory based on (13) will provide an upper bound on the optimal 
cost. The better the control law, the better the estimate. 



 
6. Example 
 
Consider the system 
 

⎪⎩

⎪
⎨
⎧

≤==′

=′

1||;2,1;)( 22

21

uquxgx

xx

q

                 (14) 

 
where  is plotted in Fig. 2. This system represented A car with two gears. 

This could be seen as a crude model of a car, u being the throttle,  the 
efficiency for gear number . 
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Figure 2: Gear efficiency at various speeds.  
 
The problem is to bring (14) from 1),0,5( =−= ii qx  to 1),0,0( == ff qx  
in minimum time. Torque losses when using the clutch calls for an additional 
penalty for gear changes. Thus, the components of (2) have been chosen as 

5.0)1,2,(,1),(),( 21 === xsuxluxl .  

The problem is plugged into the machinery of Section 4 and  is maximized 

over a region 

)(xVq

35.0,15.5 21 ≤≤−≤≤− xx . Figure 2 reveals that the first gear 

is almost useless for high speeds, leading to 5.021 +=VV for . This is 
the cost for using the second gear optimally after a gear switch. 
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Studying Fig. 3, where is plotted, the strategy for changing gears is even 
more obvious: there is only one discrete mode allowed under optimal control 

21 VV −



when the difference hits its maximum distance. In conformity with previous 
reasoning, for , indicating the need for a change of gears 
when using the first gear at high speed. Analogously, the second gear should be 
avoided, starting with zero speed.  
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A simulation of the controlled system is shown in Fig. 4, where the initial point is 
marked with a square. The state trajectory coincides with the one of a professional 
rally-driver with lousy brakes.  
 

 
 
Figure 3: The difference between V1 and V2.  
 
 
In the beginning, maximum throttle is used on the first gear (solid line). When the 
speed roughly reaches the point of equal efficiency between the gears 

, they are switched in favor of the second gear (dashed line). At half 
the distance, the gas pedal is lightened to use the braking force of the engine. In 
the end, the first gear is used again before the origin is hit. As seen in the figure, 
the granularity of the discretization grid 

)5.0( 2 =x

)18.0( =h prevents the solution from 
hitting the exact origin. 
  



 
 
Figure 4: Phase portrait of a simulation. The solid line shows where gear number 
one has been used, the dashed line shows the second gear. The initial point is 
marked with a square.  
 
Conclusion 
 
Hybrid systems combine discrete and continuous dynamics. The An extended 
version of Bellman’s inequality was discretized in this paper to compute a lower 
bound on the optimal cost function, using linear programming. analysis should 
therefore contain techniques that are well suited for computer science as well as 
control theory. The emphasis in this paper is on the continuous part, the discrete 
part consisting of a few system modes. At the other end of the hybrid spectrum, 
where purely discrete systems are found, X will reduce to a single point. The first 
inequality of proposition 1 will then be superfluous. The set of inequalities given 
by (4), possibly large depending on Q , should be met for { }frq xS =, .  
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