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1 Introduction

In the past few years various studies of aeroelastic systems have emerged. [1]
presents a detailed background and refers to a number of papers dealing with the
modelling and control of aeroelastic systems. The following provides a brief sum-
mary of this background.

Regarding the properties of aeroelastic systems one can find the study of free-
play non-linearity by Tang and Dowell in[2, 3], by Price et al. in [4] and [5], by Lee
et al. in [6], and a complete study of a class of non-linearities is in [7], [5]. O’Neil
et al. [8] examined the continuous structural non-linearity of aeroelastic systems.
These papers conclude that an aerolesatic system may exhibit a variety of control
phenomena such aslimit cycle oscillation, flutterand evenchaotic vibrations.

Control strategies have also been derived for aeroelastic systems. [9] and these
show that controllers, capable of stabilizing structural non-linearity over flow regimes,
can be derived via classical multivariable control methods. However, while several
authors have investigated the effectiveness of linear control strategies for aeroelas-
tic systems, experimental evidence has shown that linear control methods may not
be reliable when non-linear effects predominate. For example in the case of large
amplitude limit cycle oscillation behaviour the linear control methodologies [9] do
not stabilize aeroelastic systems consistently. [10] and [9] proposed non-linear feed-
back control methodologies for a class of non-linear structural effects of the wing
section [8]. Papers [10, 11, 1] develop a controller, capable of ensuring local asymp-
totic stability, via partial feedback linearization. It has been shown that by applying
two control surfaces global stabilization can be achieved. For instance, adaptive
feedback linearization [12] and the global feedback linearization technique were
introduced for two control actuators in the work of [1].

The primary goal of this paper is to develop non-linear state dependent con-
trol method capable of globally and asymptotically stabilizing a given prototypical
aerolelastic wing section via one control surface. The controller design is based
on the Tensor Product (TP) transformation introduced in [13, 14] and Parallel Dis-
tributed Dompensation (PDC) [15]. Our model incorporates the essential and well-



characterized structural non-linearities that yield limit cycle oscillation at low veloc-
ity. The control results are compared with the previously developed partial feedback
linearization technique that also utilizes one control surface.

2 Nomenclature

This section is devoted to introduce the notations being used in this paper:{a,b, . . .}:
scalar values. {a,b, . . .}: vectors. {A,B, . . .}: matrices. {A ,B, . . .}: tensors.
RI1×I2×···×IN :vector space of real valued(I1× I2× ·· ·× IN)-tensors. Subscript de-
fines lower order: for example, an element of matrixA at row-column numberi, j
is symbolized as(A)i, j = ai, j . Systematically, theith column vector ofA is denoted
asai , i.e. A =

[
a1 a2 · · ·]. ¦i, j,n, . . .: are indices.¦I ,J,N, . . .: index upper bound:

for example:i = 1..I , j = 1..J, n = 1..N or in = 1..In. A(n): n-mode matrix of ten-
sor A ∈ RI1×I2×···×IN . A ×n U: n-mode matrix-tensor product.A⊗nUn: multiple
product asA×1 U1×2 U2×3 ..×N UN. Detailed discussion of tensor notations and
operations is given in [16].

3 Equations of Motion

In this paper, we consider the problem of flutter suppression for the prototypical
aeroelastic wing section as shown in Figure 1. The aerofoil is constrained to have
two degrees of freedom, the plungeh and pitchα. The equations of motion of the
system have been derived in many references (for example, see [17], and [18]), and
can be written as
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Figure 1: Aeroelastic model
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and wherexα is the non-dimensional distance between elastic axis and the centre
of mass;m is the mass of the wing;Iα is the mass moment of inertia;b is semi-
chord of the wing, andcα andch respectively are the pitch and plunge structural
damping coefficients, andkh is the plunge structural spring constant. Traditionally,
there have been many ways to represent the aerodynamic forceL and momentM,
including steady, quasi-steady, unsteady and non-linear aerodynamic models. In this
paper we assume the quasi-steady aerodynamic force and moment, see work [17].
It is assumed thatL andM are accurate for the class of low velocities concerned.
Wind tunnel experiments are carried out in [9]. In the above equationρ is the air
density,U is the free stream velocity,clα andcmα respectively, are lift and moment
coefficients per angle of attack, andclα andcmα , respectively are lift and moment
coefficients per control surface deflection, anda is non-dimensional distance from
the mid-chord to the elastic axis. Several classes of non-linear stiffness contributions
kα(α) have been studied in papers treating the open-loop dynamics of aeroelastic
systems [2, 19, 20, 7]. For the purpose of illustration, we now introduce the use
of polynomial non-linearities. The non-linear stiffness termKα(α) is obtained by
curve-fitting the measured displacement-moment data for non-linear spring as [21]:

kα(α) = 2.82(1−22.1α+1315.5α2 +8580α3 +17289.7α4).

The equations of motion derived above exhibit limit cycle oscillation, as well as
other non-linear response regimes including chaotic response [21, 19, 7]. The sys-
tem parameters to be used in this paper are given in [1] and are obtained from ex-
perimental models described in full detail in work by [21, 1].

With the flow velocityu = 15(m/s) and the initial conditions ofα = 0.1(rad)
andy = 0.01(m), the resulting time response of the non-linear system exhibits limit
cycle oscillation, in good qualitative agreement with the behaviour expected in this
class of systems. Papers[21, 8] have shown the relations between limit cycle oscil-
lation, magnitudes and initial conditions or flow velocities.

Let the equations (1) and (2) be combined and reformulated into state-space



model form:
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 and u = β.

Then we have:

ẋ = A(p)x+B(p)u = S(p)
(

x
u

)
, (3)

where

A(p) =




x3

x4

−k1x1− (k2U2 + p(x2))x2−c1x3−c2x4

−k3x1− (k4U2 +q(x2))x2−c3x3−c4x4


 ; B(p) =




0
0
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 ,

wherep ∈RN=2 contains valuesx2 andU . The new variables are tabulated in Table
1. One should note that the equations of motion are also dependent upon the elastic
axis locationa.

Table 1: System variables

d = m(Iα−mx2
αb2) k1 = Iαkh

d k2 = Iαρbclα+mxαb3ρcmα
d

k3 = −mxαbkh
d k4 = −mxαb2ρclα−mρb2cmα

d
p(α) = −mxαb

d kα(α) q(α) = m
d kα(α)

c1(U) = Iα(ch+ρUbclα )+mxαρU3cmα
d c2(U) = IαρUb2clα ( 1

2−a)−mxαbcα+mxαρUb4cmα ( 1
2−a)

d

c3(U) = −mxαbch−mxαρUb2clα−mρUb2cmα
d c4(U) = mcα−mxαρUb3clα ( 1

2−a)−mρUb3cmα ( 1
2−a)

d
g3 = 1

d(−Iαρbclβ −mxαb3ρcmβ) g4 = 1
d(mxαb2ρclβ +mρb2cmβ)

4 Controller design method

The recently proposed very powerful numerical methods (and associated theory)
for convex optimizationinvolving Linear Matrix Inequalities (LMI) help us with the
analysis and the design issues of dynamic systems models (3) in acceptable compu-
tational time [22, 23]. One direction of these analysis and design methods is based
on LMI’s and PDC techniques [15], and functions with the multiple-model form. In
this paper we utilise the TP transformation and a PDC controller design technique
to derive viable control methodologies for the non-linear aeroelastic system defined
in the previous section. The key idea of the proposed design method is that the TP
transformation is utilized to represent the model (3) in multiple-model form with
specific characteristics, whereupon PDC controller design techniques can immedi-
ately be executed. The detailed description of the TP transformation and PDC based



designs is beyond the scope of this paper and can be found in [13, 14, 15]. First of
all, let us define the multiple-model form.

4.1 Multiple-model

This subsection defines the multiple model form of (3) as:
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)
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)
. (4)

where basis functions fulfill:

∀r,p : wr(p) ∈ [0,1]; and ∀p :
R

∑
r

wr(p) = 1. (5)

This defines a fixed polytope, where the system varies in:S(p) ∈ {S1,S2, . . . ,SR}.
MatricesSr ∈ RO×I are termed vertex systems. Further, (5) defines the convex hull
of the vertex systems as:

S(p(t)) = co{S1,S2, . . . ,SR}w(p),

where the row vectorw(p) ∈ RR contains the basis functionswr(p). In many cases
the basis functionswr(p) are decomposed to dimensions, which leads to a higher
structure of (4). Having the decomposed basis the multiple-model (4) can be written,
in order to avoid complicated indexing, in terms of tensors as:

(
ẋ
y

)
= S

N⊗
n=1

wn(pn)
(

x
u

)
. (6)

Here, the row vectorwn(pn)∈RIn contains the univariate basis functionswn,in(pn),
theN+2 -dimensional coefficient tensorS∈ RI1×I2×···×IN×O×I is constructed from
the vertex system matricesSi1,i2,...,iN ∈ RO×I . The firstN dimensions ofS are as-
signed to the dimensions ofp.

4.2 TP transformation to multiple model [13,14]

The TP transformation has various options. Let us summarize here only those that
have prominent roles in this work:

(wn=1..N(pn),S) = TP_trans f(S(p),Ω), (7)

whereS(p) ∈ RO×I is from the state-space model (3), andΩ ⊂ RN denotes the
bounded domain which the transformation is performed over. Vectorswn(pn) ∈RIn

and tensorS are defined at (6). At this point, we should describe briefly the existence
of the exact TP transformation. In [24] it is shown that the multiple-model (6) is no-
where dense in the modelling space if the number of basis functions is bounded,



which is always the case in numerical implementations. The practical significance
of this is that the transformed multiple-model is only an approximation in general
cases:

ẋ≈
ε

S
N⊗

n=1
wn(pn)

(
x
u

)
. (8)

ε denotes the transformation error. It is zero if the given model can be transformed
exactly to multiple-model form. If exact representation does not exist then we
should employ as many basis functions as possible to ensure smallε. The TP trans-
formation defines the relation betweenε and the number of basis functions, which
helps us with optimising the number of basis functions, subject to an acceptable
error.

4.3 PDC controller design

The PDC design techniques determine one feedback to each vertex model:

K = PDC(S ,stability_theorem).

"stability_theorem" is a symbolic parameter. It specifies the stability criteria ex-
pressed in terms of matrix algebra or Linear Matrix Inequalities. The control per-
formance depends on the selected criteria. For instance, the speed of response,
constraints on the state vector or on the control value can also be set by properly
selected LMI based stability theorems. A large collection of such theorems is pre-
sented in [15]. Under the framework of vertex feedback systems, one can define the
control value as:

u =−K
N⊗

n=1
wn(pn)x. (9)

5 Global asymptotic stability of the aeroelastic wing
section

This section is intended to perform the controller design method discussed in the
previous section to the present aeroelastic system defined in (3). First of all let us de-
fine the transformation spaceΩ. We are interested in the intervalU ∈ [14,25](m/s)
and we presume that the intervalα ∈ [−0.03,0.03](rad) is sufficiently large enough
(note that these intervals can arbitrarily be set). Therefore let:

Ω : [14,25]× [−0.03,0.03]

in the present example. Executing the TP transformation (7), yields that the
dynamic model (3) can be represented exactly in TP model form (6) over a 3 times
2 basis. This means that the model in (3) can be described exactly (ε = 0 in (8)) by
the convex combination of3×2 = 6 linear vertex systems.

Having the multiple-model form we can execute the PDC design techniques.
Let us select one of the simplest PDC techniques detailed on page 58 of [15].



6 Control results

To demonstrate the performance of the controlled system a numerical experiment is
performed with free stream velocityU = 20m/s, a velocity that exceeds the linear
flutter velocityU = 15.5m/s. Figure 2 shows the control results for initialsh= 0.01
andα = 0.1.
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Figure 2: Time response of derived controller forU = 20m/s anda =−0.4.

7 Conclusion

In this paper we have applied a numerical control design method which is based on
the TP model transformation and PDC design methods, to design non-linear con-
trollers for prototype aeroelastic wing sections that includes structural non-linearity.
The control design utilises one control surface. Without any control effort, or with
linear controllers, the aeroelastic system reveals various kinds of non-linear phe-
nomenon including limit cycle oscillation as noted in various text. The proposed
controller design method globally and asymptot. As a further development of this
work the authors plan to design controllers for advantageous control performance.
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